InSPIRE-II Halo PDR

15 January 2014
DARPA, NASA, NRL
AFS, MIT SSL
Outline

- Introduction and System Overview
- Mechanical Design
- Electrical Design
- Software Changes
- ISS Operations Plan
- Programmatic Risks
- Safety and Integration
- Schedule
Outline

• Introduction and System Overview
• Mechanical Design
• Electrical Design
• Software Changes
• ISS Operations Plan
• Programmatic Risks
• Safety and Integration
• Schedule
InSPIRE-II Introduction

Objective Statement: Develop a cost-effective facility for maturing adaptive GNC technology in support of on-orbit, robotic satellite assembly in a risk-tolerant, dynamically-authentic environment

- Hardware upgrades to SPHERES Facility on ISS include Universal Docking Ports (UDP), Halos, and Satlets/Any-angle docking ports
- Purpose:
 - Enable testing of on-orbit robotic assembly and servicing
 - Address challenge of aggregating resources (sensors and actuators)
 - Enable testing of various techniques for reconfigurable control and responses to changing system dynamics
- Space applications may include but are not limited to:
 - Remote or autonomous robotic servicing of retired, obsolete, or failed satellites
 - Assembly of spacecraft modules into fully-functional satellites on-orbit
 - Assembly of large spacecraft on-orbit, such as space-based telescopes
Halo System Requirements

<table>
<thead>
<tr>
<th>ID</th>
<th>Statement</th>
<th>Design Meets?</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYS-1</td>
<td>Operate safely within the ISS per NASA Safety Regulations and ISS Operations</td>
<td></td>
</tr>
<tr>
<td>SYS-2</td>
<td>Individual SPHERES shall use multiple peripherals simultaneously</td>
<td></td>
</tr>
<tr>
<td>SYS-3</td>
<td>Provide a mechanical and electrical interface</td>
<td></td>
</tr>
<tr>
<td>SYS-4</td>
<td>Provide a rigid structural interface for attached peripherals</td>
<td></td>
</tr>
<tr>
<td>SYS-5</td>
<td>Provide additional mounting locations to further extend hardware in future</td>
<td></td>
</tr>
<tr>
<td>SYS-6</td>
<td>SPHERES satellites with expansions shall be fully controllable and observable</td>
<td></td>
</tr>
<tr>
<td>SYS-7</td>
<td>SPHERES satellites with expansions shall enable appropriate testing durations</td>
<td></td>
</tr>
<tr>
<td>SYS-8</td>
<td>System setup, experiment execution, and storage within allotted ISS test time</td>
<td></td>
</tr>
</tbody>
</table>

To be filled in throughout presentation
Halo System Overview

- Enables each satellite to **interface with six external objects simultaneously** through rigid mechanical and electrical interfaces called “Halo ports” (HPs)
- Supports **VERTIGO Goggles**, multiple **UDPs**, and other future peripherals through USB and Ethernet
- Peripherals added to and removed from the Halo by the astronaut as necessary for each test
- Utilizes processing power of **VERTIGO Avionics (VA) Stack**
- Provides power to all attached peripheral devices
Outline

• Introduction and System Overview

• Mechanical Design
 • Applicable Requirements
 • Design Overview
 • Design Details

• Electrical Design

• Software Changes

• ISS Operations Plan

• Programmatic Risks

• Safety and Integration

• Schedule
Applicable Mechanical Requirements

<table>
<thead>
<tr>
<th>ID</th>
<th>Statement</th>
<th>Design Meets?</th>
</tr>
</thead>
<tbody>
<tr>
<td>STR-1</td>
<td>Provide multiple ports for rigid mounting of peripherals</td>
<td></td>
</tr>
<tr>
<td>STR-2</td>
<td>Position Halo ports in at least two dimensions</td>
<td></td>
</tr>
<tr>
<td>STR-3</td>
<td>Position all Halo ports to allow use of multiple peripherals simultaneously</td>
<td></td>
</tr>
<tr>
<td>STR-4</td>
<td>Permit all SPHERES thrusters to fire without plume impingement</td>
<td></td>
</tr>
<tr>
<td>STR-5</td>
<td>Permit SPHERES to determine its position and attitude using IR and US</td>
<td></td>
</tr>
<tr>
<td>STR-6</td>
<td>Allow removal and installation of all batteries without disassembling the Halo</td>
<td></td>
</tr>
<tr>
<td>STR-7</td>
<td>Allow removal and installation of the propellant tank without disassembling the Halo</td>
<td></td>
</tr>
<tr>
<td>STR-8</td>
<td>Allow adjustment of the propellant tank regulator without disassembling the Halo</td>
<td></td>
</tr>
<tr>
<td>STR-9</td>
<td>Provide the operator with a visible line of sight to the propellant gauge</td>
<td></td>
</tr>
<tr>
<td>STR-10</td>
<td>Allow the operator access to the SPHERES user interface controls</td>
<td></td>
</tr>
</tbody>
</table>
Halo Mechanical Design Overview
Halo Mechanical Design Overview

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Mass [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-dim [cm]</td>
<td>Y-dim [cm]</td>
</tr>
<tr>
<td>43.4</td>
<td>16.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part</th>
<th>Material</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sleeve</td>
<td>6061-T6 Aluminum</td>
<td>Strong, yet cheap and lightweight – ideal for clamping the SPHERE (as used on RINGS)</td>
</tr>
<tr>
<td>Struts, battery holders and port housings</td>
<td>3D Printed Ultem</td>
<td>Recently Flight Approved, can be designed to have adequate strength in key locations, lightweight, easy to manufacture</td>
</tr>
</tbody>
</table>
Halo Mechanical Design Overview

- Mounts on SPHERES with VA Stack
- Interfaces with VA Stack 50-pin connector
- Produces 6 identical 50-pin connectors at 6 rigid HPs around the SPHERES
- Supports 6 PCBs: Motherboard, Power board, and 4 boards at the 4 angled ports
- HPs angled at 45 degrees so that:
 - Multiple peripherals can be attached
 - Two Halo-equipped SPHERES can dock
- The 3 subassemblies include:
 - Halo Mounting Assembly
 - Halo Expansion Port Side
 - Halo Back Side
Halo Subassemblies

Back Side

Support Sleeve

Expansion Port Side
Halo CAD: Mounting Assembly

- Halo mounted to SPHERES with sleeve and struts
- Similar to press-fit design used for RINGS
- Sleeve also used for alignment
- 4 battery holders integrated into struts
- Wires between front and back halves of Halo routed along struts and sleeve
Halo CAD: Expansion Port Side

- Provides male 50-pin Samtec connector to interface with VERTIGO Avionics Stack
- Connector mates to VA Stack using ribbon cable (similar to RINGS)
- Houses Halo Motherboard at HPG and 2 Halo Port boards at HP1 and HP5
- Includes external USB and Ethernet connectors
- LEDs on each side of HPs are lit when each port is powered
Halo CAD: Back Side

- Houses Halo Power board at HP3 and Halo Port boards at HP2 and HP4
- Contains master power switch on the side of HP3
- LEDs on each side of HPs are lit when each port is powered
- Thumb screws easily accessible by astronauts
- Does not interfere with battery insertion and removal
Halo CAD: Halo Port

- HPs provide 9 cm by 11 cm flat face for flush mounting; HPG and HP3 are 12 cm by 11 cm
- Each HP provides 4 male thumb screws protruding outwards from Halo for mounting peripherals
- HPs provide mechanical connection identical to VA Stack with Samtec connector and 4 female mounting holes
- Connector is not centered so astronauts can easily recognize correct mounting configuration
Keep Out Zone Definitions

<table>
<thead>
<tr>
<th>Category</th>
<th>Req. #</th>
<th>Item</th>
<th>“Keep Out” Zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumables</td>
<td>STR-6.1</td>
<td>Battery doors</td>
<td>7 cm radius from hinge</td>
</tr>
<tr>
<td>Consumables</td>
<td>STR-7.1</td>
<td>CO₂ Tank</td>
<td>15 cm diameter, 20 cm distance</td>
</tr>
<tr>
<td>Consumables</td>
<td>STR-8.1</td>
<td>Pressure regulation knob</td>
<td>15 cm diameter</td>
</tr>
<tr>
<td>Operations</td>
<td>STR-10.1</td>
<td>SPHERES Control Panel</td>
<td>Clear</td>
</tr>
<tr>
<td>Operations</td>
<td>STR-9.1</td>
<td>Pressure gauge</td>
<td>LOS</td>
</tr>
<tr>
<td>Performance</td>
<td>STR-4.1</td>
<td>Thrusters</td>
<td>18 deg. cone</td>
</tr>
<tr>
<td>Performance</td>
<td>STR-5.1</td>
<td>Ultrasound (US)</td>
<td>90 deg. cone</td>
</tr>
<tr>
<td>Performance</td>
<td>STR-5.2</td>
<td>Infrared (IR)</td>
<td>120 deg. cone</td>
</tr>
</tbody>
</table>

Consumables: to maximize efficiency in replacing consumables during the test session, the crew should be able to handle the consumables without taking off the expansion item (i.e., the Halo or any peripheral)

Operations: areas must be kept clear because they are essential to the crew during the entire test session

Performance: blocking thrusters, ultrasound, or infrared will degrade the performance of the system
Keep Out Zone Visualization: Thruster Plumes

Keep out zone violation:

- Limits thrusting capability
- Possibly misdirects forces

- Ideally no plume impingement, however requirement depends on dynamics required for testing
- Cannot reduce thrust below a TBD threshold that enables testing of robotic assembly

Note: Grey sphere is meant to show the size of the cross-section of the plumes at an arbitrary radius and does not reflect the extent of the plume.
Keep Out Zone Visualization: Ultrasound and Infrared

Keep out zone violation:

- Should not block the entire cone, but allowed to block portions of the FOV so long as STR-5.1 and STR-5.2 are met

- The ultrasound receivers (4 on each face of the satellite) can receive pulses from anywhere in direct LOS up to 4m away

- The IR transceivers (2 on each face of the satellite) can transmit/receive IR flashes to/from any unblocked location in their 120° FOV
Keep Out Zone Visualization: Batteries, CO₂ Tank and Pressure Knob

Keep out zone violation:
- Crew must remove Halo to install or remove consumables
- These areas should not be permanently blocked by any expansion item

The crew must be able to:
- Insert, screw in, unscrew and remove the tank from the bottom of the satellite
- Adjust the regulator knob on the top of the satellite
- Open the battery doors fully with room to install and remove a battery pack
SPHERES Keep Out Zones vs. Halo

- +/- Z plumes completely unimpinged
- +/- Y plumes (not pictured) completely unimpinged
- +/- X plumes only slightly impinged
 - Will not degrade capabilities beyond acceptable limits
 - Degradation similar to that with VERTIGO Goggles

Thruster plumes shown in yellow
SPHERES Keep Out Zones vs. Halo

- Battery doors completely unimpinged
- CO\textsubscript{2} tank completely unimpinged
- Pressure knob completely unimpinged
- US/IR FOVs on +/- Y and +/- Z faces (not pictured) completely unimpinged
- US/IR FOVs on - X face (not pictured) slightly impinged
- US/IR FOVs on + X face (not pictured) completely impinged

Battery doors, CO\textsubscript{2} tank, and pressure knob keep out zones shown in orange

Optics Mount or UDP on +X face will replace sensors
Applicable Mechanical Requirements

<table>
<thead>
<tr>
<th>ID</th>
<th>Statement</th>
<th>Design Meets</th>
</tr>
</thead>
<tbody>
<tr>
<td>STR-1</td>
<td>Provide multiple ports for rigid mounting of peripherals</td>
<td>✓</td>
</tr>
<tr>
<td>STR-2</td>
<td>Position Halo ports in at least two dimensions</td>
<td>✓</td>
</tr>
<tr>
<td>STR-3</td>
<td>Position all Halo ports to allow use of multiple peripherals simultaneously</td>
<td>✓</td>
</tr>
<tr>
<td>STR-4</td>
<td>Permit all SPHERES thrusters to fire without plume impingement</td>
<td>✓</td>
</tr>
<tr>
<td>STR-5</td>
<td>Permit SPHERES to determine its position and attitude using IR and US</td>
<td>✓</td>
</tr>
<tr>
<td>STR-6</td>
<td>Allow removal and installation of all batteries without disassembling the Halo</td>
<td>✓</td>
</tr>
<tr>
<td>STR-7</td>
<td>Allow removal and installation of the propellant tank without disassembling the Halo</td>
<td>✓</td>
</tr>
<tr>
<td>STR-8</td>
<td>Allow adjustment of the propellant tank regulator without disassembling the Halo</td>
<td>✓</td>
</tr>
<tr>
<td>STR-9</td>
<td>Provide the operator with a visible line of sight to the propellant gauge</td>
<td>✓</td>
</tr>
<tr>
<td>STR-10</td>
<td>Allow the operator access to the SPHERES user interface controls</td>
<td>✓</td>
</tr>
</tbody>
</table>
Outline

• Introduction and System Overview
• Mechanical Design
• Electrical Design
 • Applicable Requirements
 • Design Overview
 • Design Details
• Software Changes
• ISS Operations Plan
• Programmatic Risks
• Safety and Integration
• Schedule
Applicable Electrical Requirements

<table>
<thead>
<tr>
<th>ID</th>
<th>Statement</th>
<th>Design Meets?</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHS-1</td>
<td>Provide at least one port with two dedicated USB lines</td>
<td></td>
</tr>
<tr>
<td>DHS-2</td>
<td>Provide all ports at least one Ethernet line and one USB line</td>
<td></td>
</tr>
<tr>
<td>DHS-3</td>
<td>The Halo DHS shall enable replacement of up to four blocked US/IR sensors</td>
<td></td>
</tr>
<tr>
<td>DHS-4</td>
<td>Allow peripherals on all Halo ports to be operated simultaneously</td>
<td></td>
</tr>
<tr>
<td>DHS-5</td>
<td>Route data requiring hard real-time action to the SPHERES satellite</td>
<td></td>
</tr>
<tr>
<td>PWR-1</td>
<td>Deliver the same voltages to all Halo ports as the VA Stack provides</td>
<td></td>
</tr>
<tr>
<td>PWR-2</td>
<td>Allow the system to run uninterrupted tests for appropriate durations</td>
<td></td>
</tr>
<tr>
<td>PWR-3</td>
<td>Provide sufficient current to support any combination of peripherals simultaneously</td>
<td></td>
</tr>
<tr>
<td>PWR-4</td>
<td>Protect SPHERES and any attached peripherals from power surges</td>
<td></td>
</tr>
</tbody>
</table>
Halo Electrical Design Overview

- HP2 Board
- HP1 Board
- Power board
- Motherboard
- HP4 Board
- HP5 Board

4 Batteries

6 PCBs shown in green
Halo Battery Selection

- Selected Battery: Nikon 16650 Lithium Ion Battery
 - 4 in parallel gives adequate voltage and max current
 - Small size integrates well into Halo structure
 - Sufficient current and capacity to support intensive CONOPS
- Already on ISS for VERTIGO Avionics Stack

<table>
<thead>
<tr>
<th>Voltage (V)</th>
<th>Capacity (Wh)</th>
<th>Capacity (Ah)</th>
<th>Mass (kg)</th>
<th>Volume (cm³)</th>
<th>Max Current (A)</th>
<th>Specific Capacity (Wh/kg)</th>
<th>Capacity Density (Wh/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>112</td>
<td>10</td>
<td>0.648</td>
<td>460</td>
<td>7.6</td>
<td>172.84</td>
<td>0.24</td>
</tr>
</tbody>
</table>

Halo Printed Circuit Boards

PCBs Include:

1. Halo Motherboard
 - Supports 50-pin connector to interface with VA Stack
 - Contains USB hubs, Ethernet switch, and PIC
 - Routes all wires to the proper HPs
 - Contains all circuitry for HPG

2. Halo Power Board
 - Parallelizes batteries
 - Creates 5V and Ground lines from Batt+ and Batt-
 - Routes power to the proper HPs
 - Contains all circuitry for HP3

3. Halo Port (HPₙ) Boards
 - Takes data lines and power lines from Motherboard and Power board
 - Supports 50-pin connector to interface with peripherals
Halo Motherboard Block Diagram (Detail)

- External USB Connectors (QTY 2)
- External Ethernet Connector (QTY 1)
Halo Motherboard Block Diagram (Detail)

- VERTIGO
- Avionics
- Interface
- Connector
Halo Motherboard Block Diagram (Detail)

- PIC32 Processor Block
Halo Motherboard Block Diagram (Detail)

- Ethernet Switch Block
Halo Motherboard Block Diagram (Detail)

- USB Hub Block (QTY 2)
Halo Motherboard Block Diagram (Detail)

- Halo Port 1 (HP1) and Halo Port 5 (HP5) Connectors
- Halo Port 2 (HP2), Halo Port 3 (HP3), Halo Port 4 (HP4) Connector
- Halo Port Goggles (HPG) Connector
Motherboard Components (1 of 3)

Microchip PIC32MX795F512L

- Key Features
- 512+12(1)KB Program Memory, 128KB Data Memory
- Embedded USB, Ethernet
- 5 independent I²C buses to provide flexible interfaces to ethernet switch and USB hub
Micrel KS8999 9-Port Ethernet Switch

- Interfaces (1) VERTIGO Avionics Box, (6) Halo Ports, (1) PIC Processor, (1) External Ethernet Connector

Key Features

- Integral Physical Layer Transceivers (PHY) and Media Access Control units (MAC)
- Can operate as a standalone 8-port-switch, or provide more customized operation via PIC processor.
Motherboard Components (3 of 3)

Microchip USB2517i

- USB 2.0 Hi-Speed 7-Port Hub Controller (QTY 2 required)
- Upstream ports are (2) VERTIGO Avionics USBs
- Available downstream ports are:
 - (12) Halo Ports (2 USB channels per port)
 - (2) External USB Connector
Halo Power Board Block Diagram
HP_N Board Block Diagram

Data lines (in/out):
- USB VD6
- USB VD3
- Ethernet

Power lines (in):
- SW Batt +
- Batt -
- 5V Regulated
- Ground

LED

VERTIGO 50 pin connector
Halo Electrical Interfaces (1/3)

• With VERTIGO:
 • Connected through 50-pin Samtec connector coming out of the VA Stack
 • Communicates through USB, Ethernet, UART (looped back)
 • US/IR lines passed through

• With SPHERES:
 • No direct connection
 • US/IR lines passed through VA Stack
 • All other communications must be processed by VA Stack

VA Stack 50-pin Samtec connector
Halo Electrical Interfaces (2/3)

- With Peripherals at HPG:
 - Provides identical electrical interface to the VA Stack (only change is UART pins are empty)
 - 2 USB lines, 1 Ethernet line, and 11.1V unregulated and 5V regulated power lines
 - HPG has 4 USB lines (2 dedicated)

HPG 50-pin Samtec connector
Halo Electrical Interfaces (3/3)

- With Peripherals at HP1-5:
 - Provides identical electrical interface to the VERTIGO Avionics Stack (only change is UART and US/IR pins are empty)
 - 2 USB lines, 1 Ethernet line, and 11.1V unregulated and 5V regulated power lines
 - HPN has 2 USB lines (from USB hubs)
Applicable Electrical Requirements

<table>
<thead>
<tr>
<th>ID</th>
<th>Statement</th>
<th>Design Meets</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHS-1</td>
<td>Provide at least one port with two dedicated USB lines</td>
<td>✓</td>
</tr>
<tr>
<td>DHS-2</td>
<td>Provide all ports at least one Ethernet line and one USB line</td>
<td>✓</td>
</tr>
<tr>
<td>DHS-3</td>
<td>The Halo DHS shall enable replacement of up to four blocked US/IR sensors</td>
<td>✓</td>
</tr>
<tr>
<td>DHS-4</td>
<td>Allow peripherals on all Halo ports to be operated simultaneously</td>
<td>✓</td>
</tr>
<tr>
<td>DHS-5</td>
<td>Route data requiring hard real-time action to the SPHERES satellite</td>
<td>✓</td>
</tr>
<tr>
<td>PWR-1</td>
<td>Deliver the same voltages to all Halo ports as the VA Stack provides</td>
<td>✓</td>
</tr>
<tr>
<td>PWR-2</td>
<td>Allow the system to run uninterrupted tests for appropriate durations</td>
<td>✓</td>
</tr>
<tr>
<td>PWR-3</td>
<td>Provide sufficient current to support any combination of peripherals simultaneously</td>
<td>✓</td>
</tr>
<tr>
<td>PWR-4</td>
<td>Protect SPHERES and any attached peripherals from power surges</td>
<td>✓</td>
</tr>
</tbody>
</table>
Outline

- Introduction and System Overview
- Mechanical Design
- Electrical Design
- Software Changes
- ISS Operations Plan
- Programmatic Risks
- Safety and Integration
- Schedule

System Requirements Recap
Halo System Requirements

<table>
<thead>
<tr>
<th>ID</th>
<th>Statement</th>
<th>Design Meets:</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYS-1</td>
<td>Operate safely within the ISS per NASA Safety Regulations and ISS Operations</td>
<td></td>
</tr>
<tr>
<td>SYS-2</td>
<td>Individual SPHERES shall use multiple peripherals simultaneously</td>
<td>✓</td>
</tr>
<tr>
<td>SYS-3</td>
<td>Provide a mechanical and electrical interface</td>
<td>✓</td>
</tr>
<tr>
<td>SYS-4</td>
<td>Provide a rigid structural interface for attached peripherals</td>
<td>✓</td>
</tr>
<tr>
<td>SYS-5</td>
<td>Provide additional mounting locations to further extend hardware</td>
<td>✓</td>
</tr>
<tr>
<td>SYS-6</td>
<td>SPHERES satellites with expansions shall be fully controllable and observable</td>
<td>✓</td>
</tr>
<tr>
<td>SYS-7</td>
<td>SPHERES satellites with expansions shall enable appropriate testing durations</td>
<td>✓</td>
</tr>
<tr>
<td>SYS-8</td>
<td>System setup, experiment execution, and storage within allotted ISS test time</td>
<td>✓</td>
</tr>
</tbody>
</table>

SYS-1 to be further addressed in Safety section of presentation

Further discussion required for SYS-5
Outline

• Introduction and System Overview
• Mechanical Design
• Electrical Design
• **Software Changes**
• ISS Operations Plan
• Programmatic Risks
• Safety and Integration
• Schedule
Software Changes

- No expected changes to SpheresCore
 - Mass and inertia, US receiver configuration, and control gains will be updated in Halo-specific code to reflect new physical properties of satellites with Halos
- GogglesCore restructured to enable multiple devices to be easily inserted
 - Simplify process for creating new classes in GogglesCore
 - Create new generalized classes rather than camera-related classes
 - “spheres” and “DataStorage” classes will remain; “cameras”, “rectifier”, “videoStreamer”, and “videoBuffer” modified to be more general
- VERTIGO Daemon generalized so it is structured for multiple generic objects to plug in through USB or Ethernet (not solely video)
Outline

- Introduction and System Overview
- Mechanical Design
- Electrical Design
- Software Changes
- ISS Operations Plan
 - Assembly Sequence
 - Test Session Plans
 - CONOPS
- Programmatic Risks
- Safety and Integration
- Schedule
Halo Assembly Sequence (1/3)

- Step 1) Mount the VERTIGO Avionics Stack onto the SPHERES Expansion Port V2
Halo Assembly Sequence (2/3)

- Step 2) Slide the SPHERES with VERTIGO Avionics Stack into the sleeve of the Halo
Halo Assembly Sequence (3/3)

• Step 3) Connect the tethered connector on the back side of HPG with the connector on the VA Stack so that the latching mechanism engages
Test Session Plans

- Total time for Halo Test Session Setup: 2.5 hours
- Total time for Halo Test Session Experiments: 3.5 hours

Halo Test Sessions:

<table>
<thead>
<tr>
<th>Event/Activity/Task/Session Description</th>
<th>Template Date(s) & Flexibility</th>
<th>Crewtime per Event (hrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPHERES Halo Checkout</td>
<td>2-4 weeks after unstow</td>
<td>6</td>
</tr>
<tr>
<td>SPHERES Halo Science 1</td>
<td>4-8 weeks after Checkout</td>
<td>6</td>
</tr>
<tr>
<td>SPHERES Halo Science 2</td>
<td>6-10 weeks after Science 1</td>
<td>6</td>
</tr>
<tr>
<td>SPHERES Halo Science 3</td>
<td>6-10 weeks after Science 2</td>
<td>6</td>
</tr>
</tbody>
</table>
Halo Test Session Setup

<table>
<thead>
<tr>
<th>Step</th>
<th>Source</th>
<th>Astronaut Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 Charge 10 Batteries</td>
<td>Existing ISS Camera Charging Procedures</td>
<td>15 min</td>
</tr>
<tr>
<td>2.0 Upload Code and Disk Image to ISS</td>
<td>VERTIGO Procedures</td>
<td>0 min (Behind the scenes)</td>
</tr>
<tr>
<td>3.0 Check Flash Disk Consistency</td>
<td>VERTIGO Procedures</td>
<td>40 min</td>
</tr>
<tr>
<td>4.0 SPHERES Work Area Setup</td>
<td>SPHERES Proc: 1.001</td>
<td>45 min</td>
</tr>
<tr>
<td>5.0 VA Stack and Halo Attachment</td>
<td>VERTIGO Procedures and New Halo Procedures</td>
<td>30 min</td>
</tr>
<tr>
<td>6.0 Load SPHERES and VA Stack programs</td>
<td>SPHERES and VERTIGO Procedures</td>
<td>20 min</td>
</tr>
</tbody>
</table>

Total Time: 2.5 hours
Halo Test Session Experiments

<table>
<thead>
<tr>
<th>Step</th>
<th>Source</th>
<th>Astronaut Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 Power on SPHERES, VA Stack, and Halo</td>
<td>SPHERES Procedures, VERTIGO Procedures, New Halo Procedures</td>
<td>30 min</td>
</tr>
<tr>
<td>2.0 Quick Checkout SPHERES</td>
<td>Embedded as Test</td>
<td>10 min</td>
</tr>
<tr>
<td>3.0 Quick Checkout Halo</td>
<td>New Halo Test</td>
<td>20 min</td>
</tr>
<tr>
<td>4.0 Run Tests</td>
<td>2.001: 2 & 3</td>
<td>50 min</td>
</tr>
<tr>
<td>5.0 Change SPHERES Consumables (C02 Tanks and SPHERES Batteries)</td>
<td>2.002</td>
<td>20 min</td>
</tr>
<tr>
<td>6.0 Change VA Stack and Halo Consumables (Batteries)</td>
<td>VERTIGO Procedures and New Halo Procedures</td>
<td>25 min</td>
</tr>
<tr>
<td>7.0 Download Data from VA Stack to Laptop</td>
<td>VERTIGO Procedures</td>
<td>35 min</td>
</tr>
<tr>
<td>8.0 Shutdown experiment</td>
<td>SPHERES Procedures, VERTIGO Procedures, New Halo Procedures</td>
<td>20 min</td>
</tr>
</tbody>
</table>

Total Time: 3.5 hours
Halo CONOPS

- 4 ISS Test sessions requested
 - Minimize risk of loss of crew time
 - Iterative & Incremental testing to prove out the system and reduce risks
 - Presume successful operations, but provide contingencies for unforeseen circumstances

- Halo Test Session #1: SPHERES Halo Checkout
 - 2-4 weeks after unstow
 - Hardware checkout and crew familiarization
 - Description: Turn on, test all Halo ports with UDPs and Goggles, begin inertia characterization, execute position and attitude maneuvers, most basic science test-move/dock/reconfigure/move/undock

- Halo Test Session #2: SPHERES Halo Science 1
 - 4-8 weeks after Checkout
 - Description: Tune controllers, test Resource Aggregated Reconfigurable Control (RARC) using UDPs and VERTIGO Goggles, incrementally test Robotic Assembly Architectures beginning with the first (beehive)

Arch. 1: Beehive
Integrated
Distributed
Prox Ops
Halo CONOPS

- **Halo Test Session #3: SPHERES Halo Science 2**
 - 6-10 weeks after Science 1
 - Description: Advance algorithms, incrementally test Robotic Assembly Architectures 3 and 7 (integrated and external tugs)

Arch. 3: Integrated Tug
Integrated
Centralized
Prox Ops

Arch. 7: External Tug
External
Centralized
Prox Ops

- **Halo Test Session #4: SPHERES Halo Science 3**
 - 6-10 weeks after Science 2
 - Description: Incremental advancements in algorithms, expand to include CONOPS with resource aggregation, reconfigurable control, vision-based navigation and mapping, and robotic assembly of modules
Outline

• Introduction and System Overview
• Mechanical Design
• Electrical Design
• Software Changes
• ISS Operations Plan
• Programmatic Risks
• Safety and Integration
• Schedule
Programmatic Risks

<table>
<thead>
<tr>
<th>Risk ID</th>
<th>Risk</th>
<th>Mitigation Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ECOs from safety reviews</td>
<td>Plan ahead for potential safety concerns using past experiences; keep margin in schedule</td>
</tr>
<tr>
<td>B</td>
<td>Compressed schedule</td>
<td>Routine progress meetings to work through problematic areas; enter reviews well-prepared; leave margin in schedule</td>
</tr>
<tr>
<td>C</td>
<td>Ground environmental testing schedule slip</td>
<td>Work to plan testing ahead of time and leave margin in the schedule</td>
</tr>
<tr>
<td>D</td>
<td>ISS Orange satellite not functional</td>
<td>Plan for Orange satellite debugging before HW gets on station; utilize 2-sat CONOPS</td>
</tr>
<tr>
<td>E</td>
<td>Challenges with modifying VERTIGO software</td>
<td>Begin incremental code changes early; update code to more advanced levels as testing requires</td>
</tr>
</tbody>
</table>

[Chart showing risk likelihood and impact]
Outline

• Introduction and System Overview
• Mechanical Design
• Electrical Design
• Software Changes
• ISS Operations Plan
• Programmatic Risks
• Safety and Integration
 • Top Level ISS Integration and Safety Requirements
 • Planned Analyses
 • Venting/Stored Energy Analysis
 • Structural Analysis
• Schedule
Top Level ISS Integration and Safety Requirements

<table>
<thead>
<tr>
<th>ID</th>
<th>Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISS-1</td>
<td>The system shall meet the requirements detailed in SSP 30233: Space Station Requirements for Materials and Processes</td>
</tr>
<tr>
<td>ISS-2</td>
<td>The system shall meet the requirements detailed in SSP 57000: Pressurized Payloads Interface Requirements Document</td>
</tr>
<tr>
<td>ISS-3</td>
<td>The system shall meet Form 1298 standard hazards primarily for sharp edges, corners, protrusions</td>
</tr>
<tr>
<td>ISS-4</td>
<td>Environmental testing must be performed for EMI/EMC, vibration, touch temperature, acoustics, and offgasing</td>
</tr>
<tr>
<td>ISS-5</td>
<td>Analysis must be performed for consideration of thermal environment, structural (launch) loads, crew induced kickloads, and sharp edges, pinch points and holes</td>
</tr>
</tbody>
</table>
Halo Safety Overview

- The team has reviewed the design and identified standard and unique hazards.
- A Safety TIM with the PSRP has been scheduled for Feb 18th. Documentation submittal due by Feb 4th.
- While referred to as a TIM, the goal will be to prepare a Safety Data package closely resembling a Phase 0/1/2, with the aim of advancing directly to a Phase 0/1/2 review in the April timeframe.
- The PSRP Safety Verification process is migrating to an online system for submitting HR’s and verification documentation.
- The team is familiarizing themselves with the new online system.
Halo Standard Safety Overview

The Halo design will adhere to NASA Safety and Integration Regulations for ISS Payloads Operations

- **SSP 30233** (Materials), **SSP 50835** (Common IRD), **SSP 57000** (Press. P/L IRD), **NSTS 1700.7B** (Safety), **SSP 52000** (ExPRESS)

- Standard Safety Form 1298 Hazards
 - Stowage Structural Failure
 - Sharp Edges, Corners, Protrusions
 - Shatterable Materials
 - Flammable Materials
 - Materials Offgassing
 - Non-ionizing Radiation (EMI)
 - Electro-Magnetic Compliance (EMC)
 - Touch Temperature
 - Electrical Power Distribution
 - Rotating Equipment
 - Mating/Demating Powered Connectors
 - Contingency Return and Rapid Safing
 - Hole Sizing

- We will be performing testing for:
 - EMI/EMC
 - Vibration
 - Touch temperature
 - Acoustics
 - Offgas

- We will be performing analysis for:
 - Thermal
 - Structural (launch) loads
 - Crew induced loads (kickloads)
 - Sharp edges, pinch points, holes
Venting/Stored Energy Analysis

- As per section F.3 of the Form ISS_OE_1298 Flight Payload Standardized Hazard Control Report calculated MEVR to verify no stored energy hazard exists in the event of depressurization/repressurization of the surrounding volume

<table>
<thead>
<tr>
<th>a) Provides an internal volume to effective vent area ratio that results in a differential pressure loading of no greater than 0.01 psid.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note: Maximum Effective Vent Ratio (MEVR) for a 0.01 psid pressure differential is defined as:</td>
</tr>
<tr>
<td>$ MEVR = \left(\frac{\text{Internal volume (in}^3\text{)}}{\text{Effective vent area (in}^2\text{)}} \right) \leq 2000 \text{in} $</td>
</tr>
</tbody>
</table>

- Venting/Stored Energy Analysis Preliminary Results:
 - Used SolidWorks 2012 CAD package to measure volumes and areas
 - Total internal volume (conservative) was calculated as: $\sim 100 \text{ in}^3$
 - The total exposed surface area of Mounting holes: $\sim 2.24 \text{ in}^2$
 - Substituting into the MEVR equation: $100/2.24 = 44.64 \text{ in} \ll 2000 \text{ in}$
Structural Analysis

- **Worst Case Scenario analyzed:**
 - During launch typically experiences up to a 6G load factor
 - As an added factor of safety, a launch load factor of 12G in each axis (corresponding to the HTV expected loads according to Table 3.1.1.2.1.1.2-1 of the SSP 50835 Common Interface Requirements Document) is used
 - Onboard the ISS, a payload may be subjected to a 125 lbf (56.7 kgf) push-off load in any axis imparted on it by a crewmember

<table>
<thead>
<tr>
<th>TABLE 3.1.1.2.1.1.2-1</th>
<th>LAUNCH AND LANDING LOAD FACTORS ENVELOPE WITHOUT PRE-DETERMINED ORIENTATION (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nx (g)</td>
</tr>
<tr>
<td>Launch (2)</td>
<td>+/-11.6</td>
</tr>
<tr>
<td>Landing (3)</td>
<td>+/-12.5</td>
</tr>
</tbody>
</table>

Notes:
1) The values assume that the stowed hardware orientation is not pre-determined.
2) The launch load factors and rotational accelerations are an envelope of the launch Nx, Ny, and Nz values from Table 3.1.1.2.1.1.1-1.
3) The landing load factors and rotational accelerations are an envelope of the landing Nx, Ny, and Nz values from Table 3.1.1.2.1.1.1-1.
Structural Analysis: Preliminary Results

- Used SolidWorks 2012 Simulation Von Mises Stress Analysis Tool with tetrahedral elements for meshing
- Verified positive safety margins with factors of safety of 1.25 (yield) and 2.0 (ultimate)
Structural Analysis: Preliminary Results (Cont’d)

- 125 lbf Crew Kick Load Analysis
 - Max Stress: 7.2 ksi
 - Max Displacement: 4.026 mm
- Factor of Safety (Yield): 1.5
- Margin of Safety > 0
Outline

• Introduction and System Overview
• Mechanical Design
• Electrical Design
• Software Changes
• ISS Operations Plan
• Programmatic Risks
• Safety and Integration
• Schedule
Schedule

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety TIM Package Due</td>
<td>4-Feb-14</td>
</tr>
<tr>
<td>Safety TIM</td>
<td>18-Feb-14</td>
</tr>
<tr>
<td>Critical Design Review</td>
<td>1-Mar-14</td>
</tr>
<tr>
<td>Phase 0/I/II SDP Due</td>
<td>4-Mar-14</td>
</tr>
<tr>
<td>Phase 0/I/II Safety Meeting</td>
<td>17-Apr-14</td>
</tr>
<tr>
<td>Phase III SDP Due</td>
<td>TBD</td>
</tr>
<tr>
<td>Phase III Safety Meeting</td>
<td>TBD</td>
</tr>
<tr>
<td>Crew Training Materials</td>
<td>TBD</td>
</tr>
<tr>
<td>Three (3) Flight Qualified units</td>
<td>1-Jul-14</td>
</tr>
<tr>
<td>Final Acceptance Tests Data Package</td>
<td>1-Jul-14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crew Procedures</td>
<td>1-Jul-14</td>
</tr>
<tr>
<td>Simulation Update</td>
<td>1-Aug-14</td>
</tr>
<tr>
<td>SpheresCore Updates</td>
<td>1-Sep-14</td>
</tr>
<tr>
<td>Interface Control Document</td>
<td>1-Sep-14</td>
</tr>
<tr>
<td>Launch (Orbital 3)</td>
<td>3-Oct-14</td>
</tr>
<tr>
<td>ISS Checkout</td>
<td>20-Oct-14</td>
</tr>
<tr>
<td>ISS Sci 1 (SW Developed)</td>
<td>1-Dec-14</td>
</tr>
<tr>
<td>ISS Sci 2</td>
<td>1-Feb-15</td>
</tr>
<tr>
<td>ISS Sci 3</td>
<td>1-Apr-15</td>
</tr>
<tr>
<td>ISS Science Report</td>
<td>TBD</td>
</tr>
</tbody>
</table>
QUESTIONS?