Propulsion

Bradley Pitts
Propulsion Requirements

- **Safety**
 - Non-toxic byproducts
 - Non-touch hazard: -18C < T < 50C

- **Propellant**
 - Propellant supply sufficient to last at least 20 seconds

- **Control**
 - System must provide for 6 DOF
 - System must provide constant performance throughout flight duration

- **Thrust**
 - An acceleration of at least 0.16m/s²
- Liquid CO₂ system
- Solenoid valves provide actuation
- System as designed for the NAR:
• Bare minimum design
 – Focused on making the system operable
 – Did not worry about safety requirements
 – Did not worry about excess tubing/wiring
• Propulsion System Major Components
 – CO₂ Propellant Tank
 – Fixed Pressure Regulator - 850 psi to 70 psi
 – 7-Way Manifold
 – 6 Micro-solenoid Thruster Pairs
 • Solenoids
 • Nozzles
 • Spacers

• Other System Components
 – Tubing
 – 3-Way Manifolds
 – Electrical Connectors
 – Tank Cradle/Heat Sink
Prototype Components

- Thruster
- Mounted CO₂ tank
- Solenoid Valves
- Lexan Panel
- Tubing
- Electrical Connector
- Nozzles
- Spacer
- 7-Way Manifold
- Tank
- Cradle
- Regulator
- Connection Screw
- T-connector
- Structures
- Propulsion
- Metrology
- Power
- Avionics
- Comm
- Software
- Systems

Program Plan

Summary
• Thrust = \(M_\text{dot} \cdot V_{\text{exit}} + A_e (P_e - P_a) \)

• Four Regimes
 (Determined by ratio of \(P_{\text{upstream}}/P_{\text{downstream}} \)):
 - \(M_N = 1, M_V < 1 \)
 - \(M_N = 1, M_V = 1 \)
 - \(M_N < 1, M_V = 1 \)
 - \(M_N < 1, M_V < 1 \)

• Subsonic Flow: \(P_{\text{throat}} = P_{\text{downstream}} \)

• Sonic Flow: \(M = 1 \)
Analytic Model:
- Choose P_o, A_v
- Cycle through all $0 < M_v < 1$

\[
\frac{A_n}{A_v} = M_v \left(1 + \frac{\gamma - 1}{2} \right) \left(1 \frac{\gamma - 1}{2} M_v^2 \right)^{\frac{1}{2}}
\]

\[
\frac{F}{P_0 A_n} = (\gamma + 1) \left(\frac{2}{\gamma + 1} \right)^{\frac{\gamma}{2}} \left(1 + \frac{\gamma - 1}{2} M_v^2 \right)^{\frac{\gamma}{2}} - \frac{P_a}{P_0}
\]
Propulsion Prototype Results

- Accomplishments
 - 6 DOF
 - Prototype Specs:
 - Thrust = 0.26 N
 - Lifetime: 20 sec ≤ t_L ≤ 1800 sec (30 min)
 - Actuated Firings through Avionics and Communication Systems

- Prototype Problems
 - Pressure leaks
 - Time needed to make system modifications
 - Liquid CO₂ build up downstream of regulator
 - No pressure safety features
 - Excess wiring/tubing
SPHERES Propulsion Requirements Check

16.684 CDIO CDR Presentation

Objective

Motivation

Systems

Sub-systems
 - Structures
 - Propulsion
 - Metrology
 - Power
 - Avionics
 - Comm
 - Software
 - Systems

Program Plan

Summary

• Geometry
 – Ensures 6 DOF movement ✓

• Nozzle Design and Testing
 – Provides 0.26 N of thrust (< 0.272N)
 – Assures minimum lifetime of 20 sec ✓

• Analysis
 – Demonstrates that CO₂ toxicity is not an issue ✓
 – Demonstrates that performance is constant throughout flight duration ✓

• Testing
 – Demonstrates an acceleration of 0.11 m/s² (0.157 m/s² w/out test stand < 0.16 m/s²)
 – Reveals minimum tank temperature of -25° C (< -18° C)
Propulsion Modifications

- Solutions
 - Lee Co. MINSTAC tubing and connectors
 - Integration of purge, cut-off, and relief valves
 - Decreasing wiring/tubing tolerances
 - Connect DSP to Heat Sink