Systems Integration

George Berkowski
SPHERES Systems: Integration Approach

16.684 CDIO CDR Presentation

Objective

Motivation

Systems

Sub-systems
- Structures
- Propulsion
- Metrology
- Power
- Avionics
- Comm
- Software

- Systems

Program Plan

Summary

- Test each subsystem independently
 - Ensure functionality of each subsystem

- Physically integrate subsystems into structure
 - Address spatial allocation conflicts within SPHERE
 - Optimize position of avionics cards and wiring

- Test each subsystem after integration into the SPHERE
 - Ensure functionality of each subsystem after integration
 - Verify subsystem interfaces

- Test overall functionality of integrated SPHERE
System Integration Tests

- Integrate propulsion, avionics and power
 - Ability to control thrusters / verify propulsion board
- Add a communications capability
 - Allow remote thruster control
- Incorporate metrology functionality into SPHERE
 - Ability to calculate position
 - Check interference issues: thruster noise
- Transmit metrology data to ground station
 - Capacity to transmit large data stream for analysis
- Incorporation of metrology data with maneuvering
 - Closes control loop
 - Shows functionality of fully integrated testbed
• Should simulate as closely as possible the effects of microgravity in a 1-g environment

• Must provide 3 degrees of freedom (restricted to 2-D movement)
 – 2 translational DOF (along x- and y-axes)
 – 1 rotational DOF (about z-axis)

• Must allow for minimal physical modification of the article to be tested
• Air bearing levitation vehicle
 – Three CO\textsubscript{2} tanks feed three pucks via a single regulator
 – A SPHERE satellite sits atop the square mounting plate for testing
 – Can also run off of in-house lab air supply
SPHERES Integration Results

- Accomplishments
 - Open loop control of single satellite
 - Limited position and attitude determination of satellite
 - Every system integrated and functional (metrology system needs refinement)
 - Integration highlighted necessary flight hardware design modifications
 - “Frictionless” 2-D air-bearing

- Issues discovered
 - Tolerance buildup
 - Quality of manufactured boards
 - Wire / Tubing buildup
 - Conflicts with subsystems; mainly propulsion and metrology
 - Too much electrical interference with propulsion
 - Too much acoustic interference with thruster firings