The SPHERES ISS Laboratory for Rendezvous and Formation Flight

Alvar Saenz-Otero
MIT Space Systems Laboratory

David W. Miller, Director
SPHERES Team

- DARPA Orbital Express Program
 - Research and flight opportunity sponsor
- Massachusetts Institute of Technology
 - Science lead
 - Prototype design and testing
 - Algorithm development
- Payload Systems Inc.
 - Flight hardware design, fabrication & testing
 - Flight hardware integration & safety
- DoD Space Test Program and ISS Payload Integration Office
 - Flight manifest on ISS
 - Payload integration & safety support
Motivation

- To reduce cost and improve performance, many missions are considering distributed spacecraft architectures
- Routine and autonomous formation flight is essential to the operation of these missions
- Long duration μ-g is impossible to simulate in a ground laboratory
- Therefore, an on-orbit testbed is needed to conduct research in μ-g for maturing these technologies
Motivation

- Take advantage of the ISS
 - Laboratory environment enables ability to perform multiple tests
 - Extended test periods of micro-gravity
 - Utilize the availability of humans by making astronauts an integral part of the design loop: the astronauts become scientists in space
 - The ISS provides a low-risk environment for the maturation and validation of 6DOF experiments

If one cannot simulate the space environment in the laboratory, simulate the laboratory environment in space.
Design Philosophy

• Design process applies to a laboratory: conceive, design, implement, operate

• Conceive
 – Research topics: Determine the major topics that want to be studied through this laboratory (e.g., control, autonomy, and metrology for SPHERES)

• Design
 – Research functions: Determine the research functions that the testbed enables in order to provide the information to investigate the desired topics

• Implement
 – Laboratory characteristics: Ensure that the laboratory design provides the capabilities for successful research in the selected topics
Design Philosophy

• Demonstration and Validation
 – Demonstration of physical system in operational environment
 – Provides go/no-go high level decisions

• Repeatability and reliability
 – Must obtain similar results under similar conditions
 – Acceptable performance must be observed under the presence of representative disturbances

• Determination of Simulation Accuracy
 – Physical experiments validate simulations, allowing ground researchers higher order of completeness prior to flight tests

• Identification of Performance Limitations
 – Physical tests provide insight to obtain quantitative physical constraints for the development of optimal algorithms

• Operational Drivers
 – Experiments provide information to determine the coupling between constraints

• Identification of new Physical Phenomena
 – Physical tests allow the observation of new physical phenomena
SPHERES: Synchronized Position Hold Engage Reorient Experimental Satellites

SPHERES is a **cost-effective, risk-tolerant, interactive testbed** operated inside the ISS for the development and maturation of formation flight, autonomous rendezvous and docking technologies.

Two communications channels:
- Satellite-to-satellite (STS) for formation/docking control.
- Satellite-to-ground (STG) for telemetry download and software upload.
SPHERES Units

- **Propulsion**
 - Replenishable CO2 at 30-50psig
 - Micro-machined custom nozzles
 - 6DOF controllability

- **Metrology**
 - IR/Ultrasound ranging system simulates GPS within ISS environment (1Hz)
 - 6DOF IMU system for high frequency data (50Hz)

- **Avionics**
 - C6701 DSP Main Processor
 - Reprogramable FLASH memory

- **Power**
 - 16 AA batteries

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>0.25 m</td>
</tr>
<tr>
<td>Mass</td>
<td>3.1 kg</td>
</tr>
<tr>
<td>Max Linear Acceleration</td>
<td>0.17 m/s²</td>
</tr>
<tr>
<td>Max Angular Acceleration</td>
<td>3.5 rad/s²</td>
</tr>
<tr>
<td>Battery Life</td>
<td>~90 min</td>
</tr>
<tr>
<td>Communications Data Rate</td>
<td>40 kbps</td>
</tr>
<tr>
<td>Power</td>
<td>13 W</td>
</tr>
<tr>
<td>Metrology Resolution</td>
<td>±2.5 mm</td>
</tr>
<tr>
<td></td>
<td>±1.0°</td>
</tr>
<tr>
<td>Tank Life</td>
<td>~10 min</td>
</tr>
</tbody>
</table>
GSP Development Plan

M.I.T.
- GSP interface delivery
- Deliver to SPHERES
- GFLOPS simulation
- Laboratory testbed

Guest Scientist at local facility
- Independent source code
- GSP simulation

International Space Station
- Upload code via KU Band
- Astronaut uploads code to SPHERES
- Run tests
- Download Data via KU band

Approximate timeframes:
- ~1 week
- ~2 weeks

Space Systems Laboratory
Massachusetts Institute of Technology
Testbed Validation

- **KC-135 Frame Follower**
 - Master unit attached to KC-135 frame
 - Slave commanded to follow the rotation of the Master: should maintain the same orientation as the frame
 - 10Hz STS communications of full attitude state (3 angles and 3 angular rotations)
 - Slave must recover from initial deployment
Testbed Validation

- 2D Docking Demonstrations
 - Cooperative docking: Master unit awaits the arrival of the slave with full actuation to align docking port
 - Slave unit starts with initial attitude offset, aligns itself with the master, and then translates to perform the docking
 - 10Hz STS communications of full 2D state (4 position, 2 attitude)
Conclusions

- Laboratory Design Philosophy created to successfully develop an environment for development of formation flight and docking algorithms
- SPHERES has demonstrated operation as a Formation Flight and Docking Algorithm testbed in 2D Laboratory and KC-135 environments
 - KC-135 experiments validated the operation of SPHERES in a 6DOF
 - 2D Demonstrations of both Formation Flight and Docking Algorithms are ongoing
- ISS Deployment in July 2003
 - Manifested in Flight 12A.1 of the ISS
 - Minimum mission span of 6 months
 - Guest Scientist Program will allow access to the testbed by multiple researchers
- Science CDR
 - Monday, 18 November 2002
 - MIT, Cambridge, MA, USA
 - spheres@mit.edu