SPHERES Operations Aboard the ISS:
Maturation of GN&C Algorithms in Microgravity

AAS GN&C Conference 2007
Breckenridge, CO
07-042

Simon Nolet & Alvar Saenz-Otero
MIT Space Systems Laboratory
Motivation & Objectives

- Develop and mature algorithms for distributed satellite systems
 - Separated formation flight
 - Docking & rendezvous and space assembly and reconfiguration
 - Tethered formation flight
- Support the *incremental maturation* of a wide range of GN&C algorithms that encompass a *field of study* in a *risk-tolerant* and *representative environment*
- Facilitate iterative research
 - Enable repetition of tests and modification of hypotheses
 - Flexible operations plan for in-house & remote development
 - Multiple operational environments: simulation, MIT SSL, ISS
- Provide focused modularity
 - Simulate a complete satellite bus (6-DOF, long duration μg)
 - Provide a generic and modular software operating environment
- Support multiple scientists
 - Guest Scientists Program
 - Expansion port allows science-specific payloads
 - E.g. active docking port, tethered system, optical precision pointing
SPHERES Overview

- Laboratory environment aboard the ISS
 - 3 6-DOF free-flyer, self-contained micro-satellites
 - Satellite-to-ground (laptop) and inter-satellite communications
 - Custom pseudo-GPS metrology system
- Guest Scientist Program supports multiple investigators

SPHERES Satellite Properties

- Diameter: 0.22 m
- Mass (w/tank & batteries): 4.3 kg
- Max linear acceleration: 0.17 m/s²
- Max angular acceleration: 3.5 rad/s²
- Power consumption: 13 W
- Battery lifetime: 2 h

SPHERES Operations aboard the ISS
ISS Test Sessions Overview

- Activities aboard the ISS during 2006 (Test Session 1 to 5)

<table>
<thead>
<tr>
<th>Area of Study</th>
<th>Active</th>
<th>Future</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardware Checkout</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Metrology</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Control</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Autonomy</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Artificial Intelligence</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Communications</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Human/Machine Interfaces</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Docking: Basic</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Docking: Re-supply</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Docking: Assembly</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Docking: Reconfiguration</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Separated Formation Flight</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Tethered Systems</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Sample Capture</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

- Results summary
 - Hardware checkout: **Success**
 - Sensor/actuator FDI: **Success**
 - Estimation algorithms: **Success**
 - On-line mass-ID: **Partial**
 - Formation flight: initial **Success**, ongoing
 - Estimation FDI: **Success**, ongoing
 - Docking “safe”: **Success**, ongoing
 - Docking “tumbling”: **Success!**, ongoing
Case-Study: Docking

Control Architecture:

remote monitoring

autonomous onboard RV-control system

autonomous FDIR

solver (on-line planning)

autonomous MVM mission & vehicle management

Target satellite

CAM

PID controllers

Glideslope controller

Global estimator

Relative estimator

sensors

GN&C modes

actuators

GN&C (spacecraft state control)

plant (chaser states)

spacecraft states

control forces/torques

TC

TM
Docking to a Beacon

- **Objective**
 - Demonstrate preliminary docking experiment with reduced hardware

- **Setup**
 - One satellite, one beacon

- **Estimator**
 - Single-beacon estimator provided 6-DOF navigation information

- **Approach Control**
 - Glideslope, PD

- **Capture Control**
 - Open Loop

- **Result: Partial**
 - Navigation error caused by estimator and IR noise drove the chaser off-track
 - Made contact with the beacon

![Docking Approach Trajectory](image)

![Tangential Alignment](image)
Docking to a Beacon, Video
Docking to a Cooperative Target

- **Objective**
 - Demonstrate docking between two satellites to an actively controlled target

- **Setup**
 - Two satellites
 - Full global metrology

- **Estimator**
 - Global estimator provided full 6-DOF navigation capability

- **Approach Control**
 - Glideslope, PD

- **Capture Control**
 - Open-loop

- **Results: Partial**
 - Satellites made contact
 - Multi-path problems led to state estimates errors and to collision
 - Illustrates the need for fault detection to improve the robustness
Docking to a Cooperative Target, Video
Docking to a Drifting Target

- **Objective**
 - Study effects of plume impingement

- **Setup**
 - Two satellites
 - Full global metrology
 - Target stopped controlling when separation dropped below 50 cm

- **Estimator**
 - Global estimator provided full 6-DOF navigation capability

- **Approach Control**
 - Glideslope, PD

- **Capture Control**
 - Open-loop

- **Results: Success**
 - Satellites made contact
 - Plume impingement effects were clear
 - State estimates smooth throughout
 - Illustrates potential problems with a straight line approach

Docking Approach Trajectory

![Docking Approach Trajectory](image1)

Tangential Alignment

![Tangential Alignment](image2)
Docking to a Drifting Target, Video
Docking to a Cooperative Target II

- **Objective**
 - Demonstrate docking between two satellites to an actively controlled target

- **Setup**
 - Two satellites
 - Full global metrology

- **Estimator**
 - Global estimator provided full 6-DOF
 - Measurement error detection embedded in the global estimator

- **Approach Control**
 - Glideslope, PID

- **Capture Control**
 - Closed-loop PID

- **Result:** Success
 - Satellites made contact
 - Crew confirmed alignment
 - Velcro did not latch

Docking Approach Trajectory

Tangential Alignment
Docking to a Cooperative Target II, Video
Safe Docking to a Cooperative Target

- **Objective**
 - Dock following a pre-computed safe trajectory that guarantees no collisions in case of GN&C shutdown at the end of the trajectory

- **Setup**
 - Two satellites, full global metrology
 - Simulated detection of a failure followed by GN&C shutdown

- **Estimator**
 - Global estimator provided full 6-DOF

- **Approach Control**
 - PID position control module to track the pre-computed trajectory

- **Capture Control**
 - Not applicable

- **Result:** *Success*
 - Successful capture occurred 5 seconds after simulated detection of failure, compatible with guaranty of no collision

![Docking Approach Trajectory Close-Up](image1)

![Docking Approach Trajectory](image2)
Safe Docking to a Cooperative Target, Video
Docking to a Tumbling Target

- **Objective**
 - Demonstrate the use of traditional GN&C architectures to dock to a tumbling target

- **Setup**
 - Two satellites, full global metrology
 - Target satellite began rotating at controlled -2.25deg/sec after initialization

- **Estimator**
 - Global estimator provided full 6-DOF

- **Approach Control**
 - Glideslope, PID

- **Capture Control**
 - Closed-loop PID

- **Results:** Success
 - Two attempts
 - 1 - Aligned contact
 - 2 - Docking!
 - Estimator FDI successfully rejected external disturbances

Docking Approach Trajectory

- Initialization
- Docking

Tangential Alignment

- Initialization
- Docking

AAS GN&C Conference 2007
MIT Space Systems Laboratory
Docking to a Tumbling Target (2)

- Followed expected trajectory
- FDI rejected external disturbances
 - Crew was taking pictures with flash during the test!

Second run demonstrated first autonomous docking to a tumbling target in micro-gravity!
Docking to a Tumbling Target, Video
Conclusions

• SPHERES as a technology maturation laboratory environment
 – Flexible reconfiguration of the SPHERES facilities enabled the team to begin operation with a limited set of hardware aboard the ISS
 – Modularity in the system proved essential to enable incremental technology maturation
 – Multiple unforeseen problems stressed the need to implement FDIR algorithms at all levels of the GN&C architecture

• Docking research
 – Demonstrated effects of plume impingement
 – Observed effects of loss of inter-satellite communications
 – Showed that initial contact between two satellites of similar mass can create substantial disturbances - need both satellites to be active
 – Safe docking provided two lessons on the use of models:
 • Showed robustness to errors in path following
 • Must be conservative in the use of margins
 – Can use traditional GN&C algorithms to dock to a tumbling target

• MORE TO COME!
Contact Information

spheres@mit.edu
http://ssl.mit.edu/spheres

• Principal Investigator
 – Prof. David W. Miller

• Lead Scientist
 – Alvar Saenz Otero

• Science Team
 – Simon Nolet
 – Soon-Jo Chung
 – Swati Mohan
 – Nicholas Hoff
 – Christophe Mandy
 – Amer Fejzic
 – Hiraku Sakamoto

• Hardware Integration
 – Payload Systems Inc.

• Program Manager
 – John Merk, PSI

• Operations Support
 – DoD Space Test Programs

MIT Room 37-381
70 Vassar St
Cambridge, MA 02139
617.324.6827