SPHERES

DEMONSTRATIONS OF SATELLITE FORMATIONS ABOARD THE ISS

Alvar Saenz-Otero, Jacob G Katz, and David W Miller
Massachusetts Institute of Technology
Space Systems Laboratory

32nd AAS Guidance and Control Conference
Breckenridge, CO
2009-Jan-30
SPHERES

Science Objectives

• Develop a platform to demonstrate and validate *metrology, control, autonomy, and artificial intelligence algorithms* for distributed satellite systems (DSS)

• Demonstrate different configurations of DSS
 – Rendezvous and docking algorithms
 • Servicing missions
 • Space assembly
 – Autonomous formation flight
 • Optical telescopes (Stellar Imager), space based radar

• Provide a *representative* environment for the demonstrations
 – 6 DOF
 – Long duration μ-g
 – Full satellite simulation
 – Allow science “payloads”
Motivation for use of ISS

- Take advantage of the ISS
 - The ISS provides a low-risk environment for the maturation and validation of 6DOF experiments
 - Laboratory environment enables ability to perform high risk tests
 - Extended test periods of micro-gravity
 - Allows iterations
 - Utilize the availability of humans by making astronauts an integral part of the design loop: the astronauts become scientists in space

If one cannot simulate the space environment in the laboratory, simulate the laboratory environment in space.
Overview

- Laboratory environment aboard the ISS
 - 3 6-DOF free-flyer, self-contained nano-satellites; 3 support satellites in ground operations
 - Satellite-to-ground (laptop) and inter-satellite communications
 - Custom pseudo-GPS metrology system
 - Guest Scientist Program supports multiple investigators and includes in-house simulator
ISS Accomplishments Summary

- 15 science test sessions of ~4 hours each since launch on May 2006
 - Approximately 6 groups of 2 test sessions (~1 week apart) every 4-6 months
- Conducted one, two, and three satellite operations in full 6DOF
- Docking research:

<table>
<thead>
<tr>
<th>Docking</th>
<th>Sessions</th>
<th>Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Traditional + On-line path planning</td>
<td>2-5,8,10, 12,14</td>
<td>Dock to tumbling target</td>
</tr>
<tr>
<td>- “Safe”</td>
<td>5-6,9-10</td>
<td>Basic “react to failure” tests</td>
</tr>
<tr>
<td>- Assembly & Reconfiguration</td>
<td>5-12</td>
<td>Basic maneuvers, joint thruster firing</td>
</tr>
<tr>
<td>- Inspection</td>
<td>10-11</td>
<td>Basic maneuvers, manual control, obstacle avoidance</td>
</tr>
</tbody>
</table>

- Formation Flight Research:

<table>
<thead>
<tr>
<th>TS</th>
<th>Date</th>
<th>Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Mar 24, 2007</td>
<td>2-Sat Lost-in-Space, 3-Sat Formation Flight</td>
</tr>
<tr>
<td>8</td>
<td>Apr 27, 2007</td>
<td>3-Sat Formation Flight</td>
</tr>
<tr>
<td>10</td>
<td>Dec 12, 2007</td>
<td>2-Sat Formation Initialization & Scatter</td>
</tr>
<tr>
<td>11</td>
<td>Jan 27, 2007</td>
<td>2-Sat Formation Initialization & Scatter</td>
</tr>
<tr>
<td>12</td>
<td>Aug 30, 2008</td>
<td>2-Sat Spiral Formations</td>
</tr>
<tr>
<td>13</td>
<td>Sep 27, 2008</td>
<td>3-Sat Collision Avoidance</td>
</tr>
<tr>
<td>14</td>
<td>Oct/Nov, 2008</td>
<td>3-Sat Comm & thruster failure sims, 2-Sat Spiral Formations</td>
</tr>
</tbody>
</table>
Incremental and iterative development of rotations which emphasize coverage of the UV plane for separated spacecraft telescopes (e.g. TPF, DARWIN, Stellar Imager).

TS7: Circle
TS12 & TS14: Spirals
TS14: Cyclic Pursuit
SPHERES

Imaging Formations: Circular Formation Flight

• TS7: 3-Satellite Formation Flight Circle
 – Method: Independent path following, synchronized start, PID control
 – Results: Success
 – Demonstrated ability of 3 satellites to describe a synchronized circular formation within 2cm error

Worked successfully on the first attempt, encouraged team to take a large step into next set of maneuvers...
Imaging Formations: Spirals

- **TS12: 2 Sat Spiral**
 - Method: Independent path following, “switchLQR” control to optimize fuel use
 - Result: Partial
 - The satellites completed the maneuver, but did not maintain <5cm precision
 - Data analysis showed an error in the switchLQR control

- **TS14: 2 Sat Spiral**
 - Method: Fixed switchLQR
 - Result: Partial
 - Improved performance (≈5cm), but not as good as circle
 - Spiral dynamics require a substantial change in controller

Changing controllers, in addition to dynamics, prevented clear identification of new physical phenomena
SPHERES

Imaging Formations: Cyclic Pursuit

- TS14: Cyclic Pursuit Circles & Spirals
 - Method: Decentralized control algorithm capable of using only relative metrology information. Performs maneuver synchronization.
 - Result: Success
 - Demonstrated good initialization, spiral expansion, and elliptical formation
 - Most of the errors are < 5cm
 - Steady state error in diameter of formation due to discretization

Incremental algorithm development allowed identification of new physical phenomena; risk tolerance enabled the team to test two new controllers
SPHERES

Algorithms for Formations

Enhance the autonomy of FF systems during initialization, reconfiguration, and in response to satellite failures.

Formation Initialization (TS10 & TS11)
Formation Scatter (TS10 & TS11)
Collision Avoidance (TS13)
FDIR (TS14)
Algorithms for Formations: Initialization

- **TS10: 3-Sat Random Initialization**
 - Method: Start a circular formation with a random leader satellite selected by crew.
 - Results: Failure.
 - Communications error prevented synchronization.
 - Add contingencies for communications losses.

- **TS11: 2-Sat Random Initialization**
 - Method: Repeat with two satellites.
 - Results: Partial.
 - Formation initialized, but leadership roles were not assigned.
 - Possible to start a formation without leader.
 - Be careful about state-based maneuver termination conditions.
Algorithms for Formations: Scatter

- **TS10: 3-Sat Scatter**
 - **Method:** Rapidly disperse formation by thrusting away from partners
 - **Results:** Partial
 - Demonstrated algorithm successfully determines scatter directions in real-time and 3D
 * Virtual boundaries incorrectly entered

- **TS11: 2-Sat Scatter**
 - **Method:** repeat with two satellites
 - **Results:** Success
 - Simple low-level tool for quickly separating satellites
Algorithms for Formations: Collision Avoidance

- **TS13: 3-Sat Collision Avoidance**
 - Method: behavior-based steering law, maximizes closest approach to nearest satellite
 - Results: Success
 - Demonstrated effective avoidance using a low-overhead algorithm which could reside in permanently in a control system
 - Need to include generous margins to guarantee collision avoidance
 - Be careful about overriding high level controller

![Avoidance Results](image1)

![Target trajectory (First Crossing)](image2)
Algorithms for Formations: FDIR

- **FDIR** = Fault Detection, Isolation, and **Recovery**
 - Recovery: the change that occurs in the system to compensate for the identified failure

- Communications Failure Simulation
 - Method: simulate a failure at known time.
 - Recovery: change in plane (assume failed satellite still has control, can stop)
 - Result: Failed
 - Too much time of “normal” ops was allowed before the failure, and other real failures occurred instead

- Thruster Failure Simulation
 - Method: thruster stuck on failure
 - Recovery: use scatter maneuver
 - Result: Success
 - Operational satellites avoid a drifting and tumbling failed satellite
Conclusions

• Imaging Maneuvers
 – Basic PID controllers with independent satellites was sufficient for circles.
 – LQR controllers with independent satellites did not provide acceptable performance in spirals
 • Spirals add a new level of dynamics that requires more complex control
 – The use of the decentralized “cyclic pursuit” controller resulted in the best spiral performance.

• Autonomy algorithms
 – Formation initialization allowed identification of multiple potential problems which would cause an algorithm to fail:
 • Algorithm: e.g. potentially having no formation "leader"
 • From other sub-system failures: e.g. loosing communications
 – Scatter maneuver demonstrations showed the importance of a scatter maneuver to dynamically determine the scatter direction.
 – Collision avoidance tests demonstrated the ability to use a low-overhead process to enable this autonomous behavior on spacecraft systems.
 – Two different methods for a formation flight system to recover from potential failures
 • Communications failure: change the plane of the formation.
 • Thruster failure: use scatter maneuver to safeguard the operational satellites
Team Information

spheres@mit.edu
http://ssl.mit.edu/spheres

- Principal Investigator
 - Prof. David W. Miller
- Lead Scientist
 - Alvar Saenz Otero
- Science Team
 - Swati Mohan
 - Jaime Ramirez
 - Christophe Mandy
 - Amer Fejzic
 - Jacob Katz
 - Brent Tweddle
 - Caley Burke
 - Christopher Pong
 - Jack Field
- Hardware Integration & Program Management
 - Aurora Flight Sciences Corp
 - John Merk, AFS
- Operations Support
 - DoD Space Test Programs

MIT Room 37-381
70 Vassar St
Cambridge, MA 02139
617.324.6827