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Abstract 
 

A low power, Hall-effect type plasma thruster known as the MIT-Cylindrical Cusped-Field Thruster 

(MIT-CCFT) has been developed and simulated using a fully-kinetic plasma model, the Plasma 

Thruster particle-in-cell (PTpic) model. Similar to the Diverging Cusped-Field Thruster (DCFT) 

previously developed in the Massachusetts Institute of Technology Space Propulsion Laboratory, 

this thruster uses cusped magnetic fields aligned in alternating polarity in order to confine electrons, 

thus slowing their flow to the anode and readily ionizing neutral gas, which is then electrostatically 

accelerated by the anode. The design methodology for the CCFT will be discussed, with significant 

emphasis on the effects of magnetic topology on thruster performance. In particular, while the 

topology is similar to that of the DCFT in that it also confines the discharge plasma away from the 

channel walls to limit wall erosion, the CCFT was also designed to minimize plume divergence. 

To predict the CCFTs performance and plasma dynamics, the design has been modeled and 

simulated with PTpic. From multiple simulations of the CCFT under different operating conditions, 

the thruster performance and plume characteristics were found and compared to past simulations of 

the DCFT. Specifically, the predicted nominal total efficiency ranged from 25 to 35 percent, 

providing 4-9 mN of thrust at a fixed xenon mass flow rate of 4.0 sccm, whilst consuming 90-400 

W of power and with a corresponding nominal specific impulse of 1050 to 1800 s. Preliminary 

observations of the particle moments suggest that the magnetic confinement of the plasma isolates 

erosion of the channel walls of the discharge chamber to the ring cusps locations. In addition, in 

contrast to the DCFT, the CCFT does not have a hollow conic plume; instead, its beam profile is 

similar to that of traditional Hall-effect thrusters. 

To supplement the efforts for optimizing longevity of the cusped-field thruster, a new 

diagnostic tool for erosion studies, novel to the electric propulsion community, has been 

implemented and has undergone preliminary validation. Ion beam analysis (IBA) allows for in-situ 

measurements of both composition and profile of the surfaces of the discharge region of a plasma 

thruster during operation. The technique has been independently tested on individual coupons with 

the use of the Cambridge Laboratory for Accelerator Study of Surfaces (CLASS) tandem ion 

accelerator. The coupons, which are composed of materials with known sputtering rates and/or are 

commonly used as insulator material, are exposed to helicon-generated plasma to simulate the 

sputtering/re-deposition found in thruster discharge region. Through comparison of ion beam 

analysis traces taken before and after plasma exposure, the effective erosion rates were found and 

validated against simulated results.  
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Chapter 1

Introduction

In-space propulsion has traditionally been dichotomized into broad categories: chem-

ical propulsion and electric propulsion. Generally, these two types of propulsion have

been utilized in distinct theaters of space missions. Through harvesting the chemical

energy of its propellants and at the cost of specific impulse, chemical thrusters are

able to create high enough levels of thrust (newton to kilo-newton) to perform mis-

sions which necessitate fast orbit and plane changes, and rapid orbital maneuvers.

However, the lower specific impulse of these devices results in higher propellant mass,

which could add significant costs to the mission.

Electric propulsion devices generate thrust via the use of electric energy to accel-

erate the propellant. In contrast, while most electric propulsion devices are generally

incapable of generating thrusts exceeding 1 N, they possess specific impulses signifi-

cantly higher than those found in chemical propulsion (thousands of seconds, opposed

to the low hundreds found in typical chemical devices such as monopropellants, bipro-

pellants, and cold-gas thrusters). Specific impulse can be defined as the relationship

between thrust and the amount of propellant used per unit time, and represented in

the following equation:

Isp =
T

gṁ
(1.1)

where T is the thrust, g is the gravitational acceleration of the Earth, and ṁ
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is the mass flow rate of the propellant. From this ratio, it is apparent that high

specific impulse results in relatively high thrust obtained with low fuel consumption.

Currently, there are many missions, such as deep space missions and long-term drag

cancellation for geostationary satellites, which require high specific impulse (> 1000

seconds) due to a high ∆V requirement for their long duration. In addition, for

missions without time constraints, electric propulsion can be used to perform station-

keeping for remote sensing or telecommunication satellites, slow orbital maneuvering,

plane changing, and orbit raising [3].

1.1 Hall-effect Thrusters

Hall-effect thrusters, which were first developed in the Soviet Union in the early

1960’s, consist of a cathode-anode pairing where electrons traveling from the exter-

nally mounted cathode to the high potential anode are impeded by a radial magnetic

field. The magnetic field, applied with electromagnetic coils, is strong enough (O[100

Gauss]) to trap the electrons within their gyroradii. Electrons also experience an

E ×B drift, which creates a Hall current:

~jHall = ene
~E × ~B

B2
(1.2)

These electrons drift azimuthally and, through collisions with injected neutral

propellant, create ions, which are electrostatically accelerated out of the chamber and

neutralized by other electrons emitted from the cathode. Though Hall thrusters are

electrostatic accelerators, the reaction force felt by the structure is not electrostatic

but magnetic, through the Hall current. A schematic of a Hall-effect thruster can be

seen in Figure 1-1.

The ions are electrostatically accelerated to an exit velocity,

vi =

√
2eφ

mi

(1.3)

where φ is the potential at the location of ionization. This is the cause of the

14



Figure 1-1: Hall-effect Thruster Schematic.

higher thrust density Hall thrusters have compared to ion engines, as Hall thrusters

are not space-charge limited given the quasineutrality of the plasma in the discharge

region. As a result of their higher thrust density and the high reliability (100% success

rate in over 200 missions in orbit), Hall thrusters are now increasingly studied and

adapted by industry for in-space propulsion. The emphasis of the current research

has been devoted toward improving thruster efficiency and extending the lifetime of

the devices. Toward those ends, improvements and modifications to low power Hall

thruster designs in recent years have included incorporation of high power permanent

magnets and adaptation of cusped magnetic topology. The adaptation of these tech-

niques at the Massachusetts Institute of Technology has led to the development of the

Diverging Cusped-Field Thruster [1] and, with continuing refinement, the Cylindrical

Cusped-Field Thruster. The effects of these modifications and their incorporation

into the Cylindrical Cusped-Field Thruster design will be discussed in detail in the

following chapter.

1.2 Plasma-Surface Interactions and Thruster Longevity

Unfortunately, in addition to propellant capacity, the longevity of any mission using

electric propulsion is also limited to the lifetime of these devices. In particular, plasma

15



sputtering of the dielectric chamber walls of the discharge region of plasma thrusters

is a primary life-limiting mechanism for long term satellite station-keeping and long-

range space exploration. For Hall-effect thrusters in particular, failure can be defined

as soft failure, which is when the dielectric insulator has been eroded to the magnetic

circuit and would eventually lead to damage to the electromagnetic coils and thus

results in thruster inoperation.

Table 1.1 [7] shows that soft failure severely limits thruster applicability for long

missions, rather than the predicted lifetime. In order to address this issue, the primary

source of erosion which causes the soft failure, particle sputtering from the plasma,

must be investigated.

Table 1.1: Lifetimes of Commercial Hall-effect Thrusters

Thruster Anode Anode Soft-Failure Predicted
Designation Power [W] Efficiency Time [h] Lifetime [h]

SPT-50 320 47 % >2,500 -
KM-45 310 40-50% 3,500-4,000 -
KM-32 200 30-40% 2,000-3,000 3,000

BHT-200 200 43.5% 1,287-1,519 >1,700
HT-100 175 25% 300 1,500
SPT-30 150 26% 600 -

SPT-20M <100 <38% 594-910 4,000

In particular, the sputtering of boron nitride (BN) is an especially critical topic

due to its widespread use as as insulator wall material in Stationary Plasma Thruster

(SPT) type Hall thrusters. Furthermore, deposition of the sputtered BN can contam-

inate spacecraft surfaces (e.g. solar panels or thermal control surfaces), which makes

it a priority to better understand its erosion mechanisms. For plasma thrusters in

general, wall degradation tends to be concentrated heavily in certain areas. For Hall

thrusters, sputtering-induced erosion concentrates at the exit channel lips, because

that is the area where the majority of ionization occurs.

However, while there have been resources spent towards finding the sputtering

yield and other material characteristics of boron nitride due to its heritage, there has

not been efforts toward developing general material diagnostic tools for studying, on a
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Figure 1-2: Sputtering Schematic (left) [8], Visual Display of Insulator Cone of the
Diverging Cusped-Field Thruster, before and after erosion (right) [7]

fundamental level, the interactions between materials and plasmas. The current tools

used in the electric propulsion community for investigating erosion are problematic in

that they usually neccesitate the dismantling of the propulsion device, are extremely

time consuming, and are limited for in-situ measurements. With the increasing so-

phistication of materials science and the subsequent advent of many new materials

which could outperform boron nitride, there is a need for an expedient means of

determining the adaptability of said materials to thruster use. To fulfill this need,

ion beam analysis, an analytical technique commonly used in materials science but

hitherto less commonly used in the propulsion community, has been employed and

its applicability is further explored in this thesis.
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1.3 Research Overview

This thesis will cover two discrete research topics: developing a new electrostatic

thruster based on the lessons learned from the Diverging Cusped Field Thruster

(DCFT), and testing and validating a novel technique for measuring erosion. Chap-

ter 2 of this thesis describes the background of cusped field plasma thrusters, the

development and performance of the DCFT, its influences on the design criteria of

the Cylindrical Cusped-Field Thruster (CCFT) thruster, and the subsequent design

and construction of the CCFT thruster. Results from the preliminary testing of the

CCFT are shown in Chapter 3. In Chapter 4, the modeling and predicted perfor-

mance of the CCFT from simulations run with the fully-kinetic Plasma Thruster

Particle-in-Cell (PTpic) code is discussed in full. The implementation and prelimi-

nary validation of a novel erosion measurement technqie, ion beam analysis, is covered

in depth in Chapter 5. Finally, a summary of the work and recommended future work

is provided in Chapter 6.
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Chapter 2

The MIT Cylindrical Cusped-Field

Thruster Overview

2.1 Background: Cusped-Field Thrusters

In Chapter 1, the basic principles of Hall-effect thrusters were discussed. While Hall

thrusters have certain advantages over other plasma thrusters, such as thrust density

compared to ion engines, there are a few limitations. Due to electron confinement

within radial magnetic fields which intercept thruster inner walls, there is a resulting

flux of electrons to the dielectric insulators and a subsequent formation of a sheath.

This sheath induces an ion flux, which could lead to ion recombination at the wall,

radial ion acceleration within the discharge, and sputtering of the inner dielectric sur-

faces. These effects negatively impact the performance and, in the case of sputtering,

severely limit the longevity of Hall thrusters. In fact, it is the erosion of the inner

dielectric walls of the Hall thrusters which leads to exposure and subsequent damange

to the magnetic circuit, which will be termed soft failure.

To address this problem, efforts have been devoted toward redesigning the mag-

netic configuration of the Hall thrusters for alternate means of electron confinement.

As a result, the Cusped-Field thruster class was developed as a concept that has sim-

ilarities to the general family of Hall devices but is clearly distinguished by the use of

magnetic cusps for electron confinement. In these cusps, electrons are magnetically
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mirrored and, as such, are limited in their flux to the wall. While the magnetic field

near the cusps is radial and contributes to the eponymous azimuthal Hall currents,

the electrons are repelled from the cusps due to the high gradient of the magnetic

field at their location. To illustrate this magnetic mirroring effect, the contributing

repulsive force is shown in Equation 2.1:

F|| = −
mev

2
⊥

2B
∇||B (2.1)

where B is the magnetic field strength, v⊥ is the perpendicular velocity to the wall,

∇|| is the gradient of the magnetic field parallel to the wall, and me is the mass of the

electron. From conservation of the magnetic moment and total electron energy, the

electrons entering an area of high magnetic gradient (e.g. the cusps) must increase

their perpendicular energy whilst diminishing their parallel energy, thus reflecting the

electrons away, as shown in Figure 2-1. If the electrons have sufficient parallel energy,

they can overcome the magnetic bottling and collide with the surface. However, the

resulting electron flux is significantly lower than the flux found in a standard radial

magnetic field.

Figure 2-1: Magnetic mirroring of electrons in a cusped-magnetic field. Note the
incident ion attracted to the cusp, where there is a sheath from the electron flux on
the wall.

Away from the cusps, the magnetic field is mainly parallel to the surface and

electron mobility across field lines is facilitated by collisions in the radial direction

and anomalous diffusion, but it remains very small. As such, the overall electron flux

away from the cusps is negligible and the resulting sheath potential will not be strong

enough to attract the detrimental ion flux to the wall.
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Among the designs that employ the cusped-field magnetic design, the Prince-

ton Cylindrical Hall Thruster (CHT) [24] and the Thales High Efficiency Multistage

Plasma Thruster (HEMPT) [4] have served as a motivation for initial designs of the

Diverging Cusped-Field Thruster (schematics shown in Figures 2-2 and 2-3). A de-

tailed comparison between the DCFT design, and the CHT and HEMPT has been

documented by Courtney [1].

Figure 2-2: Schematic of the Princeton Cylindrical Hall Thruster (top), CHT mag-
netic circuit and field lines (bottom). [24]

Figure 2-3: Schematic of the Thales HEMPT and potential plot (left), HEMPT
plasma plume (right). [4]
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