
��
�

�����������	
���������	�����
����
���������
�����������

�
���������	
����������������������

�
�
�

��������� �����������
� �

��
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��
�

�����������	
���������	�����
����
��������
�����������

�
���������	
����������������������

�
�
�

��������� �����������
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��������	����
����������������������������������� ����
���������������
������������������������
�� ���
������ ��� ������� ��� ������������ ��� ����������� ����� ������� ��� ��������� �������� ��� ����
������������������������������������� �

��
�

����������	
���	������
	���������

��������������������

��

�����������

��
��������������

�� �������

����!"#�!"$!�

���%�������&������������������'�������������������� �����������

�� ������������������

�

���������

%�����������������������������������
����������������� ������������������������
��� �����������������������������	���� ����
������������������#�������������(��������������	� ���������������������������������)���������
��������������������������������*����)�������������� ����������� ������
��������������������������
�(��� ������������������)��� �+���������������������
�������,��������������
�����(������������������� ���������������������������#������������
���������������������	��������(������������������ �����
�����(���������������������������������� �
���������������������
����������������������
��	�� ��������� �����������������������������(��
���
��	��������������������������� �&���������	�� ���
�������,�������
�����(��������� �
�

������������(����-�+�(�������,�.����#�%���

�����-������%/�'���0�������������

�

�

�

�

�

�

�

�

�

��
�

�������
�
�
����
�
��	
�������
����������	��	������������������ ����������	���� !" ��
��������
����#���!�$��	�
���%��&�����������%����������� ���
�����
���
�
�������	�%�����
�

��������������$������	
��
����&�������������
� ������
��&� �'��(���)*+������������
("�,!,(���������
��������������$���&�

�

Contents

1 Introduction 8

1.1 Collaborative Editing . 8

1.2 Player Programs . 8

1.3 Problem Statement . 10

2 Background 11

2.1 SPHERES . 11

2.2 Zero Robotics . 11

2.3 Initial Standing of the Zero Robotics IDE 13

2.4 Initial Standing on the Collaborative Tools for the ZeroRobotics IDE 18

3 Backend Design 21

3.1 Locking Editor . 21

3.2 Merging Editor . 23

3.3 Real-time Editor . 25

3.4 Comparison . 27

3.5 Decision . 28

4 Frontend Design 31

4.1 User Interface Principles . 31

4.2 Principles for Player Programs .. 33

4.3 New Features . 34

4.4 Summary of Designs . 39

5 Implementation 41

5.1 Backend Implementation . 41

5.2 Frontend Implementation . 44

6 Testing 52

6.1 Clicktracking System . 52

6.2 User Testing . 54

6.3 Survey Results . 62

6.4 Clicktracking Results . 63

6.5 Conclusion . 64

6

List of Figures

1 Zero Robotics Projects Tab . 13

2 Zero Robotics Editor View . 15

3 Global Variable and Procedure Return Types 15

4 Zero Robotics Compiler . 16

5 Simulation Settings Screen . 17

6 Global Locks . 19

7 Locked Project . 19

8 Comparison of Three Di�erent Backends 28

9 Original Zero Robotics UML Diagram 42

10 Updated Zero Robotics UML Diagram 43

11 Revision Status Display . 45

12 Commit Comment . 46

13 Status Marker Descriptions . 46

14 Status Markers . 47

15 Individual Merge Messages . 48

16 Merge Content . 49

17 Updated Menu Bar . 50

18 Merge All . 51

19 Clicktracking SQL Structure . 53

20 Survey Responses . 62

7

1 Introduction

1.1 Collaborative Editing

Software systems are getting more and more complex every day. In order for software

teams to keep up with past development speeds, companies must hire more developers

as well as �nd innovative ways for them to collaborate. Problems such as concurrency

control and code integration must be dealt with so that teamscan contribute to the

same project in parallel. This has given rise to much thoughtabout collaborative

programming, where software teams have a methodology of designing, implement-

ing, and integrating software for a single system. Several modern solutions such as

Gclipse[1] and Cola[2] rely on real-time editing to deal with concurrency issues as well

as provide instantaneous information. While they certainlyprovide useful properties,

in this thesis I investigate whether or not they are the idealediting environments for

player programs.

1.2 Player Programs

Besides complex software systems being developed in the private sector, there are

other types of software projects that require a great deal of team collaboration. Com-

petitions such as Battlecode[3], held yearly at MIT, allow teams of developers to de-

sign and develop a "player program" to compete in a computer game. The details of

the game are di�erent every year, but the challenge is alwaysthe same. Teams must

combine battle strategy, software engineering and arti�cial intelligence to construct

a player program to best their opponents. In doing so, teams must learn and in-

corporate path �nding, distributed algorithms, and network communication in their

players. Even though the grand prize is the main driving forcefor the contestants,

8

in the end, every player gains something from the competition. It could be as simple

as being the �rst time they applied their software skills to an open competition to

gaining experience working with a team on a large scale software project to learning

swarm AI and A* path �nding techniques. Competitions such as Battlecode are great

ways to encourage students to go above and beyond their basicclass assignments to

create pieces of software that reect their true ability, and to hone their skills even

further.

It is clear that a great deal of collaboration must be put into developing these

player programs, but there is an insu�cient amount of tools toallow developers to do

so. At �rst one may try to apply results from existing collaborative editing research

papers to the IDEs of these player programs, but taking a stepback, one can see that

player programs are a unique type of project. While all complex software projects go

through iterative phases to continually improve themselves, player programs iterate

much faster and must remain in a "compilable" state. In orderfor a contestant of

a player program project to assess their player, they are usually provided with a

simulation tool that can run a match between two players at any time the contestant

wants. For this simulation tool to be of use, however, the contestant's project must

remain "compilable". For example, if a contestant wants to see how changing the

value of a certain constant in their player program a�ects the outcome of the match,

they should be able to continually change the constant, re-compile their project, and

run the simulation tool. They should be able to do this as if they were the only

person editing the project, even if their team is also working on another piece of the

project. With this in mind, applying the real-time componentof emerging IDEs may

not necessarily be the best enhancement for developers working on player programs.

9

1.3 Problem Statement

Developing player programs is a great way to get groups of students interested in

programming at an early age, but the lack of a standardized collaborative environment

for these player programs greatly hinders the students abilities to work and learn

together. In this thesis, I will research the concepts and tools that will provide the

ideal collaborative tools for working on player programs. I will then implement and

test my vision of the ideal editor. Lastly I will analyze and conclude my �ndings for

potential future work.

10

2 Background

2.1 SPHERES

My thesis will be based on work performed on Zero Robotics, which is one of the pro-

grams under SPHERES. The MIT Space Systems Laboratory developed the SPHERES

(Synchronized Position Hold Engage and Reorient Experimental Satellites) labora-

tory environment to provide DARPA, NASA, and other researchers with a long term,

replenishable, and upgradable testbed for the validation of high risk metrology, con-

trol, and autonomy technologies for use in formation ight andautonomous docking,

rendezvous and recon�guration algorithms. These technologies are critical to the op-

eration of distributed satellite and docking missions suchas Terrestrial Planet Finder

and Orbital Express.[4]

2.2 Zero Robotics

Zero Robotics is a robotics programming competition that utilizes the SPHERES

satellites inside the International Space Station. It was created in 2009 by the MIT

Space Systems Laboratory (SSL) and astronaut Greg Chamito�with the goal of open-

ing research on the International Space Station to large groups of secondary school

students[5]. The goals of Zero Robotics include building lifelong skills in science, tech-

nology, engineering, and math. Much like Battlecode, Zero Robotics allows a team

to develop a player program that controls a SPHERE satellite.Each year the game

objective of Zero Robotics is di�erent, but the topics involved are the same. Students

must apply their knowledge of mathematics, physics, and programming to design and

develop a program to meet the game challenge. Currently students can access the

full Zero Robotics IDE in a web browser. There is also a simulation environment and

11

tool provided to the students that allow them to see how their code will work in a

real match environment. Most of the competitions in the ZeroRobotics tournament

are software competitions. They are held to continually eliminate teams to reach the

�nal competition. The �nals are then held aboard the ISS and the �nalists code are

run on physical SPHERES.

With several rounds of competitions to submit players for, Zero Robotics contes-

tants must quickly iterate through versions of their projects in order to reach their

best project. Also, with the supplied simulation tools, it isimportant that the projects

remain in a "compilable" state. With these requirements, Zero Robotics projects �t

the description of a "player program". Since a single Zero Robotics team may consist

of up to 20 students, it is very important for the collaborative tools provided by the

IDE to be su�cient. In addition to a team having up to 20 students, the 2011 Zero

Robotics tournament also had a concept of alliances. After thesecond competition,

the top 54 teams formed 18 alliances of three teams each. Going forward from there,

each alliance was responsible for submitting one player program for future competi-

tions. With a single team comprised of up to 60 students in three di�erent geographic

regions, it is even more important that the collaborative tools be su�cient. My thesis

will explore the ideal editing environment for developing player programs. Although

the collaborative enhancements I will be working on will be targeting the existing Zero

Robotics IDE, the lessons learned should be applicable for player program editors in

general.

12

2.3 Initial Standing of the Zero Robotics IDE

To better understand the editor I will be starting from, in this section I will provide

an overview of the Zero Robotics IDE. In the projects tab, users can browse their

own projects, browse projects that are shared by teammates,and create new projects.

They can also access speci�c revisions of projects and choose to share their projects

with teammates. A detailed guide of the main actions available in the projects tab is

shown in �gure 1.

Figure 1: a. Create a new project
b. Access projects and revisions
c. View or set shared projects

The more interesting features lie in the ZR IDE tab. Here we have all the tools

that an editor requires to be su�cient for developing player programs. First, there is

a generic text editor in the middle of the screen. Currently the SPHERES API is only

accessible through the C programming language, and so usersmust only program in

13

C in this text editor. Users are only allowed one class �le per project, but they are

allowed to create as many procedures and global variables within the project as they

like (so long as the whole project is within a size limit). Variable types are limited to

signed/unsigned chars, ints, and oats. Procedure return types and arguments also

have the same restriction, as shown in �gure 3.

14

Figure 2: This is the view of an empty project in the Zero Robotics

Figure 3: When adding a new procedure, in addition to void, there are three valid
return types. These types also represent possible global variable types

15

Once the project is ready, the user can then compile it to �nd out any warnings or

errors that exist. A code usage percentage is also shown to the user to remind them

to stay within the project size limit. After the project has beensuccessfully compiled,

the user can �nally run some tests, or simulations, with it. A comprehensive popup

allows the user to set game constants as well as set a particular opponent to run the

simulation with. With the feedback from the simulation, the user can re�ne their

project and repeat the process to their satisfaction.

Figure 4: The code is compiled server side and any warnings or errors are sent to the
user

16

Figure 5: Users can simulate with custom settings to more e�ectively test their code

Along with a game manual, the ZR IDE is all a user needs to developa fully

functional Zero Robotics player. However, this task is too much for an individual

alone. Teams of high school students along with a mentor spendmonths perfecting

17

every line of code in a project. Collaboration is an integralpart in developing a Zero

Robotics player program and the IDE must provide the necessarytools to make it

possible.

2.4 Initial Standing on the Collaborative Tools for the Zero

Robotics IDE

When the Zero Robotics 2011 tournament was o�cially releasedin September, the

collaborative tools provided to contestants could be considered the bare minimum.

Students were allowed to share their projects with their team, but in order for anyone

to edit a shared project, a global lock on the project had to beobtained. This meant

that there could only be a single person actively working on a speci�c project at any

given time. Non-lock holders could not even run simulations with the existing project

code). All they were able to do was refresh the page to view the latest version of the

project. With alliances of up to 60 students, these limitations were clearly a great

bottleneck in the development process.

18

Figure 6: Global locks handle concurrency issues, but can greatly hinder e�ciency.

Figure 7: Once a project is locked by one user, no one else can edit the project

Throughout the 2011 tournament several enhancements were made to the Zero

Robotics IDE to assist project collaboration. The enhancements were limited to small

changes in order to avoid forcing a new IDE upon the users, butthey improve on at-

19

tributes that the ideal editor should certainly take into account. First was the ability

to view the latest version of a procedure by simply clicking on it. This improved the

feedback system, since users normally had to refresh the whole page to ensure that

they were viewing the latest version of a project. Next was the ability to simulate

a project even if a lock was not held. With this, users without the lock could still

be very productive. They could gather useful data for the team by seeing how the

latest version of a project fared against standard players(that were provided) or other

projects the team created. Although the existence of a globallock still greatly slowed

down progress, this feature was a big step towards unconstrained editing. Last was

the addition of a chat room system where each project was its own room. With this,

users could see who else was viewing the project in real-timeand communicate with

them about the project. Instead of having to coordinate the use of another chat

system or communication tool, users were provided one that automatically placed

them in the same room as others viewing the same project. Thisaddition was a great

enhancement in providing real-time feedback.

Although the Zero Robotics IDE took a huge step forward with these enhance-

ments, it was still far from being considered an ideal collaborative editing environ-

ment. In the next two sections I discuss my designs for turningthis into a reality.

20

3 Backend Design

The main issue with collaborative editing is currency control. When researching

di�erent types of editors, I came up with three potential ideal editors for Zero Robotics

that approach this problem di�erently. They all solve the problem, but still have their

own strengths and weaknesses. They are a locking editor, a merging editor, and a

real-time editor.

3.1 Locking Editor

A locking editor is a simple, yet e�ective way of dealing with concurrency control.

In order for a user to edit a project, that user must hold the projects lock. There

is only one lock per project, and so this naturally limits oneeditor of a project at

any given time. With these conditions, concurrency control is no longer a possible

problem since there cannot be concurrent updates to a project.

One major strength of a locking editor is that locking is a concept that �rst-time

programmers will easily grasp. A simple metaphor is that there is only one computer

to work on. Multiple teammates can look on the screen (read access), but there can

only be one person actively working on the project (write access). While locking in

general does pose some more complicated situations, such asdeadlock and livelock,

this should not be a problem since users will not be able to obtain more than one

lock at a time in the Zero Robotics IDE.

Although a locking editor solves the problem of concurrency control, another prob-

lem that arises is that the way it solves the problem is also its biggest weakness. By

not allowing multiple writers at once, users cannot step overeach other, but this also

21

greatly limits e�ciency. The previous metaphor becomes a reality. Even though there

may be multiple computers for a team to work with, the conceptof locking limits

them to one user editing a given project at a time.

The limitation of a single writer may instantly deter most from choosing a locking

editor, but there are many enhancements that can be made to improve the e�ciency

of a simple global lock design.

The granularity of locks in the ideal locking editor should be exible or depend on

the applications that are being developed in it. In the case of Zero Robotics it makes

most sense to have element level locking, where an element is aprocedure or global

variable. One could even wish for the granularity to extend toline-level locking as

well, since the majority of users are high school students that may not have much

experience with procedures. Either way, the properties of alocking editor remain the

same. While one user has a lock on an element, the user is the only one allowed to

make modi�cations to it. However, other users are still able to view the element while

it is being modi�ed.

Zero Robotics currently also has a notion of "stealing" a lock. This means that

the stealer obtains the lock and the original holder no longerhas the lock, with no

modi�cations to either users' view of the project. This can be useful if a user forgets

to release the lock, but can also be dangerous if users are not careful. Work may

be lost if the original owner of a lock does not realize that they have lost it. In the

ideal locking editor, each element will have a bu�er associated with it. When a user

obtains a lock on an element, they "own" the bu�er for that element. Changes they

type will stream into the bu�er and when they save, the bu�er will be cleared. With

22

this system, if user A steals a lock from user B, user A will receive the bu�er and

user A's screen will be updated to reect those changes. The potential work lost from

stealing locks is now gone. With a locking editor, complex concurrency problems are

eliminated in a simple way.

3.2 Merging Editor

A merging editor would resemble many of the Version Control Systems(VCS) that are

in use today. Systems such as Subversion[6], CVS[7], and Git[8] use a Copy-Modify-

Merge protocol where users �rst copy a version of a project from a repository into

their local workspace. After modi�cations to the project aremade, the user must

merge in changes from the latest version of the project and resolve any conicts that

may have arose from other users updating the project. When themerging step is

complete, this ensures that the user's version of the project has the latest changes

and �nally the user is allowed to submit the latest version ofthe project.

The ideal merging editor for Zero Robotics would work in a similar fashion. When

users view a project, they immediately check out a copy of theproject. They are free

to do anything with the project, as if they are the only ones editing it. They can

edit and save the project as well as compile and run the simulation tool on it. If

their version of the project is up to date, they are allowed tocommit new revisions of

the project. However, if there are conicts between the latest version of the project

and the current view of the project, the user may have to perform manual conict

resolution in order to merge and commit a new revision of their code.

The major advantage of a merging editor is that a single project can have multiple

23

concurrent editors that do not interfere with each other. A team can optimize one

section of their code, test another section, and add a new section all at once. For

development of a player program, this is a great plus becausetime is often an impor-

tant factor of the competition. By being able to edit in parallel, development speeds

are greatly increased, iteration time is reduced, and ultimately the end result is better.

While a merging editor can bring numerous advantages to Zero Robotics, there

are important aws to consider as well. The concept of personal copies, latest revi-

sions, reference revisions, and merging may be complicatedenough to scare away high

school students as well as any �rst-time programmer. Beforea new user can jump

into Zero Robotics and get their hands dirty with some initial development, they

will need some basic understanding of the versioning system. Having to learn this

as well as general programming, more advanced mathematics and physics, and the

ZR API may be a daunting task for most high school students. A second aw is the

merging of conicts. This is a process that requires human intervention to sort out

code manually. Because multiple users are able to edit the same project as if it were

their own, there are situations where the editor simply cannot detect the correct �nal

state without human input. This requires a human to spend their time tidying up

existing code instead of developing new code. Even in the professional world, some de-

velopers dread the unavoidable moments when they must manually merge their work.

Since the major problems with a merging editor are its lack of simplicity and its

time consuming merging mechanism, the ideal merging editorhas features to solve

these problems, as opposed to further increasing e�ciency.

To deal with the problem of simplicity, the user interface ofthe ideal merging

24

editor must be very intuitive. Enough information must be provided to the user so

that they do not need to actively search for it on their own. There must also be a

limit of the information shown, to keep the interface simple and uncluttered. To solve

the merging problem, a clean, intuitive merging user interface will also su�ce. With

a strong backend design such as a merging editor, e�ciency isautomatically gained

and the major design decisions lie in the front-end. Another great bene�t is that

since Copy-Modify-Merge systems are in great use today in the workplace, users will

be able to easily adapt into and from other popular VCS.

3.3 Real-time Editor

A real-time editor is an elegant solution to concurrency control. Instead of creating

addition tools to restrict access or sync revisions, a real-time editor provides full ac-

cess and perfect synchronization with all users viewing a given project. In a real-time

editor, right as one user makes a change to the project, that change is instantly prop-

agated to all other users so that everyone sees the change andeveryones views are

consistent with each other. The change can be the addition ofan element, deletion

of an element, or even as small as one character change in an element. It will be as

if several users are connected to the same computer, but theyeach have their own

keyboard, mouse, and screen. They are allowed to individually navigate through the

project and make edits, but since they are on the same computer, there is only one

state of the project that they all see.

With this perfect synchronization, concurrency control is no longer a problem.

Even if two users attempt to edit the same element at the same time, with granular

enough timing or a clever scheme, we can determine which user attempted the edit

25

�rst. If it turns out that the second edit overwrote the �rst e dit, this will be apparent

to both users because they both would see this immediately. Ifboth users are simply

typing text in the editor, they would quickly write over each others' text, but they

would also immediately see it and be able to resolve the problems that arise.

The real strength of a real-time editor is the ability to dealwith the problem of

concurrency without adding any overhead to the users. They donot need to worry

about managing locks or merging in code. Editing a shared project with multiple

teammates viewing the project is as similar as editing an unshared project. Users

are constantly provided with information about their current collaborators and their

edits. This type of editor closely resembles emerging editorsdiscussed in the intro-

duction. With a real-time editor, users have access to a natural, highly responsive

interface just as if they were physically working in the sameroom together.

However, a signi�cant drawback of a real-time editor is that agiven project may

not be in a compilable state for a long duration. If there are several editors on a

single project, it is possible that they are all editing their own procedures. If the �rst

user that �nished their changes wanted to test their code through a simulation, the

user would have to wait until the project reached a compilable state. Since several

users are typing text into their procedures, this may not happen because any syntax

error would break the compilation. It may be possible that the�rst user must wait

until the last user has �nished their changes in order to testtheir code.

While the ideal real-time editor would not have to add any features to deal with

concurrency control, it would need some to address these issues of compilability. Since

it is not trivial to determine speci�c states of a project once it is under a real-time

26

editor design, these features would have to be highly complex. A project may be un-

compilable because of a certain section of code that has beenedited by several users in

several di�erent points in time. A user friendly feature would have to be designed to

consider this and allow the user to compile with a great amountof exibility. Similar

to the merging editor, a real-time editor has e�ciency built into the backend, and an

ideal version only needs to improve upon the front end features.

3.4 Comparison

While these three editors su�ciently tackle the problem of concurrency, they each

have their own strengths and aws. A locking editor is a simple solution that solves

many issues, but requires users to perform additional stepsto actually obtain a lock

for the elements they wish to modify. It also restricts the number of concurrent edi-

tors of an element to one at a time, which can greatly hinder productivity. A merging

editor may seem to be very unrestrictive at �rst, but manual conict resolution can be

a dreadful task in the software world. Understanding the design of a merging editor

may also be non-trivial for a beginner programmer. A real-time editor is an elegant

solution, but it may leave the project in an uncompilable state for long periods of

time. Multiple users will be able to edit in parallel, but only test serially. The chart

below summarizes the strengths and weaknesses of each editor.

27

Figure 8: Each row represents a positive feature of the editor. Although the real-
time editor has the most features, being compilable is a key part of a player program
editor.

3.5 Decision

Without the ability to allow multiple users to edit the same element at the same

time, a locking editor is not a true collaborative editor. The existence of a global lock

would hinder development speeds since this would only allowone editor at a time.

As the locks become more granular, it is possible for users to edit di�erent parts of

the same element, but the overhead required to manage these locks also increases. In

order to make edits to an element, a user must lock a section of code or the signature

of the element. If users forgot to release locks on parts theywere working on, this

can slow down other teammates that are waiting for the lock tobe released. Deletion

of elements can become a nightmare if other users have locks onand are continually

editing the element. Overall, the necessary work required for the user does not make

the ideal locking editor the best overall collaborative editor.

It is evident that real-time editors have a great number of advantages over tra-

ditional editors through their emergence in the workplace.However, due to their

lack of compilability, they are not the best collaborative editor for developing player

28

programs. Being able to compile a project, run simulations with it, and evaluate it is

a critical part of player program development. This is how they are tested and just as

it is with any other software project, testing is very important. This is especially true

for player programs because of how involved testing is in thedevelopment process and

how iterative the process is. Without compilability, development on a real-time editor

can even be slower than a locking editor. A user will only be ableto simulate their

code if the whole project is in a compilable state. This may bedi�cult to achieve

if multiple teammates are all editing di�erent parts of a project at once. Even once

the last user has �nished their changes, others may have moved on to work on new

sections. Any features to improve compilability would add signi�cant overhead to

the user. With only the active view of the project, it is di�cul t to see how a user

could test only their changes. All in all, the lack of compilability of a real-time editor

greatly limits its performance when working with player programs.

I decided to proceed with a merging editor design, but also incorporate real-time

features wherever possible. According to �gure 2, the major aws of the merging ed-

itor are its complexity, its need for manual merging, and thework required to update

a project.

The complexity can be especially daunting for a program suchas Zero Robotics

because the user base may contain �rst time programmers. However, with the use

of e�ective tutorials or a tooltip system, this can be converted into a perk. Learning

how to use one of the most popular VCS can certainly be helpfulin the future. I

plan on creating tests to evaluate how new users adjust to thesystem, but leave it to

future work to create mini lessons on how to use it.

29

Manual merging is often feared because the interface it is presented in is confus-

ing, or even worse, it is in a command prompt. This can be solved if an intuitive

interface is provided to the users. Conicts must be clearlynoted, and the options

provided must be clearly visible and exible. Most importantly, the user must not be

overwhelmed with information or available actions. I will develop my own interface

for manual merging that will take all of these points into consideration.

There are several parts considered in the work required to update a project. First,

the user must be alerted that there is a new revision of the project. This must occur

in a non-obtrusive fashion. The user should then be able to �nd out which elements

have been changed in the new revision. Lastly, it should be up tothe user to choose

to accept them or not. Keeping all of this in mind, a friendly user interface can turn

the process of updating a project into a simple task. I will alsoinclude these features

in my collaborative editor implementation.

With the problems of the ideal merging editor solved, the best backend design for

editing player programs is a merging editor.

30

4 Frontend Design

4.1 User Interface Principles

When developing the front end of any application, it is important to follow a set of

user interface design principles or heuristics. Some go by standard heuristics such as

Nielsen's Top 10, while others follow their own guidelines. Whichever set the devel-

oper chooses to use, I believe there are four overarching UI principles[9]: learnability,

visibility, e�ciency, and errors.

Learnability describes how long it would take and how e�ortless it would be for

a user who has never seen the interface before to become familiar with it. Complex

systems clearly require more complex user interfaces than simple systems, but a front

end developer following good learnability principles can design a complex user inter-

face as learnable as a simple one. Wizards and tutorials are a great way to for a

�rst time user to be stepped through the most important features. Metaphors and

a�ordances allow completely new tools to be as intuitive as an everyday task. But

the most important part of learnability is keeping the memory required of the user

low. If the user does not need to remember having used the interface in the past in

order to e�ectively use it, then the user interface is highlylearnable.

Visibility is all about what information is shown to the user. The interface can

show possible actions the user can take, the state of the interface, or provide feedback

from a user request. A visible user interface provides as much information as possible

to the user without overwhelming the user. It must keep a balance between showing

too little information and appearing too cluttered. If a certain tool is not immediately

accessible on the screen, it should at least be easily found within a few clicks. This

31

is often achieved through menu bars and other dropdowns. A perfectly visible user

interface would be able to predict the user's next action, and immediately bring forth

the necessary tools as well as hide irrelevant information.Although this may not be

achievable for user interfaces today, there are still many ways to bring about high

visibility.

An e�cient user interface is one that allows the user to complete their task in

a reasonable amount of time. The tools provided in one must each have a unique

purpose and never be repetitive to use. If a certain feature must be used multiple

times in order to complete a single task, the developer should reconsider the use cases

of the feature and possibly improve it to better �t those use cases. Another metric

for e�ciency is the accessibility of each feature. Properties such as size and location

and heuristics such as Fitts's law help determine how easily and quickly a user can

access the feature. Keyboard shortcuts can also improve upon this property. Just as

in the visibility section, predictive logic can improve e�ciency. An example is the well

known autocomplete feature. By suggesting common responses or previous responses,

a user will not have to type out the full text of a query. At the bare minimum, a truly

e�cient user interface has tools to speed up repetitive tasks and grants easy access

to those tools.

Errors are an often forgotten yet very crucial part of a user interface. They cause

can originate from the user (ex. leaving a required �eld blank) or come from the

application itself (ex. server is down). In either case, errors will occur in all user

interfaces and it is important to handle them appropriately. Instead of letting the

system fail or alerting incomprehensible error codes, proper error handlers should

explain the error in laymen's terms to the user. In the case of small errors, the in-

32

terface should suggest ways to avoid the error in the future.If a more pressing error

occurs, constructive methods of resolving the error should be presented. A step be-

yond error handling is error prevention. Instead of developing ways to �x the error,

it may be possible to stop the error from ever occurring. An example is disabling a

form's submit button until all required �elds are �lled out. With this approach, a

user interface does not force the user deal with an annoying popup. The user will

automatically realize a part of the form is not complete and avoid the error altogether.

While I will incorporate all of these principles in my frontend design, I will focus

on the ones that will have the most impact on player programs:learnability, feedback,

and e�ciency.

4.2 Principles for Player Programs

Learnability is the most important principle of a user interface that is designed for

developing player programs. This is mainly due to the short duration that a player

program competition lasts. They often run for only a single month up to a few

months. In this time, participants must learn a brand new API, develop strategies,

and iterate countlessly to perfect their player. The time andfocus needed to learn a

new editor can greatly slow down a team's progress. Learnability is especially impor-

tant for Zero Robotics because of the nature of the user base.Zero Robotics teams

are often composed of high school students with little to no background of program-

ming. In addition to learning the other topics (physics and advanced mathematics)

required to create a functional Zero Robotics player, students may be encountering

"if" statements for the �rst time. Any early frustrations wit h programming concepts

or the programming interface can easily turn away students for life.

33

Feedback is the next most important principle. The main distinction between

editing a normal project and editing a game player project isthat one would expect

a player project to be edited simultaneously by multiple teammates more often. Be-

cause of this, the state of the project is more constantly changing and it is important

that the users know about these state changes. A user may haveadded, changed,

or deleted elements that are crucial in another user's current work. It is important

to acknowledge the latest changes and decide whether the current development work

is a�ected by those changes. It is possible that the newest developments make the

current work obsolete, in which case it is much more helpful tolearn about it sooner

rather than later. With enough feedback from the system, users will continually be

up-to-date on the state of their projects and will feel con�dent that their current

development will actually improve the projects.

E�ciency is also crucial for player programs. Because of theshort duration of a

player program competition, it is important to provide the necessary tools to make

the users' development process as e�cient as possible.

4.3 New Features

In order to make e�cient use of the new backend system, a wholesuite of new fron-

tend tools will be required. In this section I will describe the new features being

added as well as which principles they improve.

The �rst new feature is a revision status display. With the newmerging backend

editor, users will have personal working copies of a projectcalled "drafts" which will

34

reference speci�c revision numbers of a project. Any draft must reference exactly one

existing revision number of a project (henceforth known as areference revision) and

a user may only have one draft per project. This will allow future tools to under-

stand where this draft exists in the revision ladder. Anotherimportant revision to

take into account is the "latest revision". This is the most up-to-date revision of a

given project. Knowing a user's draft's reference revision number as well as the latest

revision number will better help the user understand the state of the project, and

this is exactly what the revision status display is for. Because of the importance of

the information is displays, it will be located in an open and clearly visible area on

the interface. It should also update in real-time to provideas e�ective feedback as

possible. Whenever a user updates their reference revision,the status should update

accordingly. Whenever another user commits a new latest revision of the project, the

status should also update immediately.

In the existing version of Zero Robotics, every "save", "compile", and "simulate"

action creates a new revision of the project. In the new merging editor, "saves" will

only save to a user's draft. A new "commit" action will used forcreating the latest

revisions of a project. Due to the necessity of a commit action, its button should be

placed in a highly visible area such as the menu bar. The new system of allowing

users to commit latest revisions on their own without holding a lock can pose new

problems. For example, if "User A" is unaware or forgets to notice that "User B" has

created a new latest revision, "User A" may commit their own latest revision without

pulling in the latest changes. This can potentially wipe outall traces of "User B"'s

changes in the latest revision. Another version of this problem can occur even if two

users are highly attentive to the revision status display. If they both commit new

revisions within the same second, one of their commits will inevitably be overwritten

35

by the other one. In order to prevent this scenario, I have chosen to perform a check

on all commit actions. A commit will only be accepted if the user's draft references

the latest revision. This is to ensure that the user has the latest copy of the project

and has received all changes from commits. With this check, thetwo aforementioned

scenarios would no longer be possible. The latest commit would fail because their

draft no longer references the latest revision. The user must update their draft to

receive the changes from the latest revision before they areable to commit their own.

This �x is a good addition to the error preventative methods of the new user interface.

As described above, users will need a tool to update their draft to bring in changes

from the latest revision as well as update their reference revision. I have chosen to

combine both of these into a single action. That is, in order to update a draft's ref-

erence revision to the latest revision, the user must also review the changes brought

about by the latest revision. The user may very well decide toreject all changes pre-

sented to them (potentially overwriting other user content), but they will be know-

ingly making that decision. In order to present all of the changes brought about by

the latest revision and provide the exibility to allow the user to accept/reject each

one individually, a well designed pop up interface is needed. It must be learnable,

visible, and e�cient. More details about this interface is described in section 5.2.

Upon successfully deciding which changes to keep and which to discard, the user's

reference revision will be updated and reected in the revision status display. The

user will now be able to commit their own changes.

With a tool to update a draft to the latest revision, it would be helpful to know

in advance which elements are actually out of date. A user maybe focused on one

section of the project when the user notices that a new latestrevision of the project

36

has been committed. If the changes are in a separate section,the user may decide to

ignore them for now to concentrate on their current work. However, if the changes

are within the user's section, it may be worth grabbing the changes now rather than

later. To provide this useful feedback, I envision a status marker next to everything

that can change within a project. For Zero Robotics, this means a marker next to

each element. Instead of having just an on/o� mode for this marker, I have decided

to allow it to display di�erent states with di�erent colors. Rather than having to

understand several di�erent symbols, users will be able to grasp the same knowledge

with di�erent colors. I have chosen colors because the humaneye can much more

easily distinguish color than shape.

There are three main statuses that an element can be in. The �rst is the up-to-date

status. This means that the draft version of the element exactly matches the latest

version of the element. There is no requirement that the reference revision match the

latest revision. For a global variable, exactly matching means that the sign, the type,

the length, the initial value, and of course the name all match. In the remainder of

this paper I will refer to all of these as the signature of the variable. For a procedure,

exactly matching means that the return type and all aspects of all arguments must

match. These will also be known as the procedure's signature. In addition, the pro-

cedure's text content must match. To show an that an element is up-to-date, I will

provide a green marker next to the element. I chose green because it is often used

as a sign in user interfaces to describe that all things are going well, such as a green

check mark. The next obvious status is a out-of-date status.This will mean that the

draft version of the element does not match the latest versionof the element, as well

as the reference revision does not match the latest revision. The point of this status is

to show that there is a later version of the element that has some changes to it. The

37

change can be as small as one character di�erence in the editor to the whole element

being deleted. For this status I will use a red marker. Red is often used in world as a

warning or cautious color, such as in stop and danger signs. An appropriate warning

is warranted for elements that have a red marker since it means that the elements

have changes to them and an update should be performed beforecontinuing to work

on them. The last status is an edited status. It means that thedraft version of the

element does not match the latest version of the element, butthe reference revision

does match the latest revision. Instead of showing that another user has committed

changes to the element, this status designates that the userhas uncommitted work.

This will be a good visual reminder for users who are new to a merging revision

system. These users often keep their work in the draft, committing only once when

everything is �nished. The status marker will continually remind them to commit

once they have something working, which is generally a betterpractice in the work-

place. I have chosen blue to represent the edited status. Although blue does not have

a consistent meaning in user interfaces, it is the third additive color and should not

get confused for the other green or red statuses. Just like therevision status display,

the status markers should update in real-time to provide valuable feedback to the user.

When red status markers appear, users know to update their project to grab the

changes from the latest revision. However, a user may be unwilling to be brought

away from the user's current task to update their project if they see that there are

many changes to deal with. To �x this problem, I will also add individual element up-

dating. Users will be able to update single elements when theysee red status markers

appear. Although the reference revision will not update until the user performs an

update on the whole project, users can view the changes that asingle element has

undergone without having to deal with the other changes of the latest revision.

38

The last user feature is another common VCS tool, reverting. With the new merg-

ing backend, each draft has a well de�ned reference revision. Reverting elements in a

draft will bring them back to their reference revision state. This is a great example

of providing tools for error handling. If a user changes an element several times while

testing, but then would like to remove all of the changes, reverting the element will

do just that.

4.4 Summary of Designs

To summarize the list of design decisions, below I describe each change or new feature

that is to be added to the system.

Drafts: Users will no longer directly edit revisions of a project. Instead, they

will work on personal drafts of projects. These drafts will start o� from a speci�c

revision of a project, known as a reference revision. Users will be able to update their

reference revision to point to later versions by updating their drafts.

Locks: Since users only edit their personal drafts, locks are no longer required.

The notion of locking will be completely removed from the entire system.

Revision Status Display: This display will show a draft's reference revision as well

as the project's latest revision numbers. It will automatically update in real-time and

will be easy to locate.

Commit Button: The commit button will be used to create the latest revision of a

project. It will take a copy of the user's draft and append it to the project's revision

list, creating a new latest revision. In order to use it, a user's draft's reference revision

39

must match the current latest revision.

Status Markers: Each element in a project will have its own status marker to

display its state. It can be up-to-date with the latest revision(green) or out-of-date.

When it is out of date, there are two sub-states. If the reference revision matches the

latest revision, then it is in the edited state(blue). If thereference does not match,

then it is in the missing changes state(red). These status markers will also automat-

ically update in real-time and be easy to see.

Element Merging: When elements are missing changes, users will be able to per-

form a merge on them. There are many ways in which an element can be missing

changes, and the actions to merge them are speci�c to each case. The details are

discussed in section 5.2.

Conict Merging: Conicts occurs when the user has made changes to the content

of a procedure but the latest revision also has di�erent content. Resolving the conict

is not a simple task and will require a well-designed interface to get the job done.

Merge All: Rather than merge individual elements at a time when a draft is out

of date, users can use the merge all tool to update all elementsthat are out-of-date

at once. Upon successfully merging all, the reference revision of the draft will update

to point to the latest revision of the project.

Reverting: Users will be able to revert elements to bring themback to their ref-

erence revision state. All properties will be changed back.

40

5 Implementation

With a strong set of backend and frontend goals, I will delve into the implementation

details.

5.1 Backend Implementation

In order to turn a locking editor into a merging editor, several changes need to be

made. Locking needs to be removed, personal drafts need to becreated, drafts need

to link to a reference revision, and the server must keep records of the latest revisions

of projects. Fortunately, with some clever logic, only one table in the database needs

to be modi�ed to add one �eld in order to accommodate these changes. Shown in

�gures 9 and 10 are the before and after UML diagrams describing the parts of the

database that handle projects and their components.

41

Figure 9: This UML diagram shows only the tables related to projects in the original
database.

There are individual entities for each of the element types,as well as a project

itself. Arguments are tied speci�cally to the procedure that they were created for.

To associate a project to its elements, a revision table is used. There are then two

association tables to associate speci�c procedures and global variables to each revision.

With this setup, minimal space is required as the number of revisions grow. Instead

of duplicating whole projects for small changes in revisions, we only need to create a

42

revision entry and the appropriate associations. For locking, the system keeps track

of a ProjectLock for each project. When users acquire locks ontheir projects an entry

is inserted into the table. When users release their locks, the entry can be deleted.

In order to turn this locking system into a merging system, we simply need to add a

boolean �eld to the Revision table.

Figure 10: This is the updated database. Locks are no longer required and a boolean
�eld is added to the Revision table.

The ProjectLock table is also no longer needed, but I have chosen to keep it for

43

potential future use. Instead of creating a new table to handle user drafts of projects,

we can cleverly reuse the Revision table. With this system, a revision is a user's

personal draft if the draft �eld is equal to true. If it is false, then it is a committed

project revision. The checkedInBy �eld refers to the user whocommitted a revision

if the revision is a draft and it refers to the user who owns thedraft otherwise. All

of the other �elds remain consistent with each other and so this dual use is valid.

To �nd out the latest revision of a project, one only needs to query for the largest

revisionNumber with the correct projectId.

5.2 Frontend Implementation

In this section I will describe the new frontend features that were developed to ac-

company the new backend system as well as the challenges I came across when doing

so. To recap, the list of features discussed in section 4.3 were:

-Revision Status Display

-Commit Button

-Status Markers

-Individual Merging

-Merge All

-Element Reverting

The �rst feature was the revision status display. This was a simple feature, but

it was important to present it in a highly visible section of the interface because of

the usefulness of its information. In order to allow it to automatically update itself

without any user action and in as close to real-time as possible, I used a recursive

44

AJAX call. This would poll the server for information on the latest revision status.

On a successful callback, the client would queue up the same AJAXcall to be executed

in 10 seconds. Although the updates would not occur in real-time, a 10 second delay

is acceptable.

Figure 11: The top right section of the IDE was a clear, open spot that users could
refer to for useful information. I chose to place the revision status display there with
bright red text.

The next feature was a commit button. Since I anticipated a high usage rate for

this button, it made the most sense to place it in the menu bar alongside the other

most commonly used tools. As an addition to the previously de�ned commit button,

I also added a required comment to enforce good programming practices.

45

Figure 12: Providing a description of the changes involved in acommit is an example
of good programming practice. This will allow other users tosee what has changed
from one revision to the next just by reading the comments.

The next features were the ones that deal with individual elements. Figure 13

concisely summarizes how status markers were determined for elements.

Figure 13: It is important that the di�erent statuses have clear states that will not
overlap with each other.

46

Figure 14: In this example ZRUser is up to date, but calculateDistance has been
edited in the latest revision.

However, since elements can di�er in many ways, individual element merging

quickly grew complex. Global variables can di�er in sign, type, length, or initial

value. Procedures can di�er in content, return sign, returntype, or any part of any of

the arguments they contain. To simplify the choices users hadto make, I treated the

sum of the changes in a signature as a single change. With this policy, the number of

possible di�erences was greatly reduced. Figure 15 describes the messages that are

displayed to the user for each type of change. Each message isanswered with the

same Yes/No popup to keep consistency across the interface.

47

Figure 15: These are example messages when a user tries to mergean element under
a certain type of change. Adding does not display a message because the elements
are automatically added to the draft. There is a separate popup for content changes
in procedures because of possible conicts.

To perform the merging action on each individual element, new buttons were

placed next to existing edit buttons. I also enabled clicking on the status marker

itself to perform the merge. To signal that a new element exists in the latest revision,

red status markers appear next to the corresponding "New Element" button. Once

clicked, the elements will be automatically added into the draft. Although this may

not be immediately clear to new users, it is a consistent and concise way to provide

the feature. For content changes in procedures, conicts can easily become complex.

I have developed a dedicated popup interface to handle thesetypes of element merges.

One of the most di�cult parts of using a merging editor is resolving conicts.

The biggest problem is that the user resolving the conict may not immediately

understand the new latest changes and how to merge them into the user's own changes.

Another important factor is that user interfaces are often cluttered with information,

making them hard to understand. I have designed an interface that only contains the

necessities to keep the interface simple. It clearly presents the options available to

the user and even allows for some exibility. A detailed example is shown in �gure

16.

48

Figure 16: To help simplify the content merging process, the interface is as simple as
possible.

In this popup, conicts are clearly denoted with large red sections. When clicked,

the three areas on the right: "My Revision", "Parent Revision", and "Latest Revi-

sion" display their own versions of the conicted region. Theuser can clearly compare

the sections on the right and decide which one to pick. Once the appropriate "Use"

button is clicked, the corresponding text is transferred over to the conict box and

is now highlighted green to represent a resolved conict. For added exibility, I have

made the green area an editable textbox so that the user can edit right inside the

popup. Users may not want any individual version of the element, but instead want

a mixed copy. The textbox will allow the user to freely add content to the region

while all three versions are clearly visible on the right.

49

To determine conicts, I used Unix's di�3 utility. When given tw o copies of a

�le and their ancestor version, "di�3 -m" is able to produce amerged output that

contains both sets of changes with clearly marked conict regions. I was then able to

take that merged output and parse it into sections of the samecode and sections of

di�ering code to feed into my "Merge Content" interface.

Finally, I added a feature to merge multiple elements at once.This button would

also update the reference revision. Similar to the commit button, I expect it to be a

commonly used feature.

Figure 17: Two new features: 'Commit' and 'Merge All' are placed in the menu bar.

As discussed before, the interface for merging multiple elements must be learnable,

visible, and e�cient. Similar to the "Merge Content" interfa ce, I plan to achieve

learnability and visibility by keeping the interface as simple as possible while still

achieving its goals. For e�ciency, I have set default actions for each of the individual

merging actions to choose the most likely response. However,the user is free to

override the defaults if they choose to.

50

Figure 18: The Merge All interface clearly presents each change from the latest
revision. Defaults are set, but the user can ultimately choose to accept or discard
any and all changes.

With an initial implementation of the new backend and frontend systems, I turn

my focus towards testing.

51

6 Testing

In order to test the new collaborative editor, I created a suite of eight tests for users to

�nd out how intuitive the new features were. I then had three undergraduate students

who were familiar with the Zero Robotics IDE take the tests and report their �ndings

through a survey. To also collect objective data, I implemented a clicktracking system

to be run in the background.

6.1 Clicktracking System

Whenever a user clicked on one of the new features, a post was sent to an o�site

PHP server describing the type of click it was. The server would parse it and insert

an appropriate record into a MySQL database. Once all the tests were complete, I

would then be able to analyze quantitative results of the new collaborative editor.

For commits, I compared the number of successful commits versus unsuccessful

commits. An unsuccessful commit can be attributed to an unsaved project or having

a reference revision out of date. If the tools provided for committing were truly

intuitive, I would expect only a few unsuccessful commits compared to successful

ones in the long run. For all of the merging popup interfaces,I compared their

success rate as well. In all cases, the user is given an acceptoption, a decline option,

and a cancel option. A fourth "X" button was also available on the topright of each

popup that would essentially act as a cancel. I treated the accept and decline options

as successful responses and the cancel or "x" as unsuccessful responses. Figure 19

shows the database structure created to determine these rates.

52

Figure 19: The user �eld is used to aggregate data on a per user basis. Combined
with the timestamp, it estimates the duration the user spends on each popup. The
other �elds are used to determine what the user clicked on in order to determine the
success rates of each feature.

53

6.2 User Testing

In this section I will describe each of the eight tests created and their objectives. I

will then analyze the results and feedback from three users.For each test, users were

given a project that was in a speci�c state and a set of instructions to follow. After

�nishing the test, users were to rate the test as one of the following:

1. Confusing/had problems and had to skip it

2. Confusing/had problems but was able to �nish it

3. Very straightforward/ no problems

In project 1, users are given an empty project. They are askedto add two simple

elements and then commit the project.

In this simple test, all three users described the test as "very straightforward",

showing that there is nothing unexpected with the commit tool.

54

In project 2, users initially have an empty project, but are told that the latest

version of the project has new elements. Without being told how, they are told to

bring in the new elements into their draft.

Two users believed the task was straightforward and one userrated it a 2. All three

mentioned that the terns "updating" in the provided testing steps and "merging" in

the user interface could have been more consistent. For futuretests, this will be

important to take into consideration. It is interesting to note that all three users had

updated revisions as a �nal result. This means that they used the "Merge All" button

instead of clicking on the red status lights next to the "New Element" buttons.

55

In project 3, users are presented with a draft with several elements already in it.

There is a later version of the project and the users must update their drafts without

being told how.

Again, two users believed the task was straightforward and one rated it a 2. In

the comments, the user who rated it a 2 describes that the term"update" was the

confusing part.

56

In project 4, users have procedures that conict with the latest revision. They

are tasked to resolve the project by accepting the latest revision's content as well as

signature, but told not to edit the procedure through the text editor or 'edit proce-

dure' button that existed in the locking editor.

Two users had no trouble and one had to skip the test. In the comments, the

instructions provided were confusing, especially the partabout updating without the

user of 'edit procedure'. It is possible that this user did not have signi�cant experience

with the Zero Robotics editor to know about the 'edit procedure' button. Another

user commented that the size of the scrolling windows provided glitchy results on

their screen size. It will be important to run thorough testsof the new collaborative

editor with di�erent screen sizes.

57

Project 5 tests how intuitive the textboxes in the "Merge Conict" interface are.

Users are provided with a conict where all three versions have errors in them. Each

of them have di�erent errors �xed, and the sum of them providean error-free mes-

sage. Users are told to approach the problem with intuition andare told to not edit

the procedure through the normal text editor.

Each of the ratings received one response and only one project achieved the ex-

pected result. One user encountered trouble with the merging tools and one simply

chose to use their draft revision's contents. The user that managed to end up with

the correct resulted commented that it was not very clear thatthe green textboxes

were editable. This is a great lesson and shows that more steps will need to be taken

to indicate the exibility of the conict resolution interfa ce.

58

In project 6 the state of the project is out of date. Users are asked to update their

project and to commit a new change. The original intention ofthis test was to see

if users remembered to update their reference revision before attempting to commit

a new latest revision. However, since the previous tests show that users have always

been using the "Merge All" tool to update their project and reference revision at the

same time, it turns out this test may have been poorly constructed.

All three users had no problems with this test.

59

The state of project 7 is very similar to project 6. The draft is out of date and

the user is asked to update the project. However, they are toldto not delete any

elements. This will test how easy the "Merge All" interface isto use when it comes

to choosing which changes to accept and reject.

Two users had no problems while one user commented about a potential bug in the

interface. An provided suggestion in the survey was to includea legend describing

the coloring scheme. Although my intention was to provide an interface intuitive

enough to not require a legend, it seems that additional information may still help

some users.

60

Project 8 combines several of the previous tests. Users are asked to intuitively

resolve a conict in order to commit their own latest revision.

One user successfully completed the test and rated it straightforward. The other

two users reported encountering more bugs with the system. More investigation will

be required to resolve the bugs that users are encountering.

61

6.3 Survey Results

After completing all of the tests, the users had some additional survey questions to

answer. First they were asked how they felt about each of the new elements on a

scale from "would strongly like to change/remove it" to "liked it and it should stay

the way it is". Figure 20 summarizes the results.

Figure 20: Responses in the �rst two columns are high indicators of areas that need
to be improved upon.

From this we can see that the textboxes inside the merge conict popup need

to be redesigned. The merge conict window itself may also need to be �xed since

two out of three users had trouble using it. The merge all window could use some

improvements and the individual merge buttons need to be clearer.

62

When asked "Colored graphics were added to the interface to provide intuitive

information without labels. Which sentence best describes how you felt about them

in general?", a variety of answers were received. Out of the four possible responses:

1. They were confusing, and still are.

2. They were confusing at �rst, but I understand what they mean now.

3. They were confusing at �rst, but I understand what they mean now.

4. They were intuitive and should remain the same.

all were chosen except the �rst. This shows that although theusers were eventu-

ally able to understand their meaning, it could be very helpful to provide a legend

whenever colors are used to signify di�erent meanings.

Lastly, when asked to provide extra feedback, one user suggested that an "on-

screen instruction set would be great for beginners". This would certainly solve the

problem of users not noticing certain features (refer to �gure 20) and is a great

learnability feature to look into.

6.4 Clicktracking Results

After all users �nished the testing processing, the clickingtracking results were ag-

gregated. There were 9 successful commits and 0 unsuccessful commits. With such

a detailed step-by-step instruction set provided to the users, this result is not too

surprising. However, it is reassuring that the users always had updated references

and saved projects before attempting to commit.

The merge all popup had 17 successes and 8 cancels. The merge content popup

had 10 successes and 4 cancels. Although there were more successes in both cases,

63

the number of cancels are not what one would expect from a learnable and e�cient

interface. However, these results are consistent with the survey results describing the

trouble the users had with the interfaces.

Lastly, it is interesting to see that the individual mergingtools were hardly used

at all. This may be due to a lack of need to use them during thesetests. There was no

reason to use them when a merge all would achieve the same task in a shorter amount

of time. In order to e�ectively evaluate the usefulness of the individual merging tools,

they must be tested during real development phases.

6.5 Conclusion

After the design and development that occurred throughout this thesis, the Zero

Robotics editor has taken a great step in perfecting its collaborative tools. The lessons

learned can also be applied to the development of player programs in general. A copy-

modify-merge editor is preferable over a locking or real-time editor. Learnability,

feedback, and e�ciency are crucial principles when designing the user interface. An

initial round of testing still shows some areas of possible improvement, but the overall

system is far preferred over the old system. Future work involves redesigning a few

features to become more intuitive to use and a larger scale test. It may be di�cult for

those who have never programmed or those who have never codedwith a team before

to jump into player programming, but with the standardized set of collaborative tools

set out in this thesis, developers of all ages and experiences can more easily learn and

code together.

64

References

[1] Cicolini, M. February 2, 2005. Gclipse. Retrieved from

http://disco.ethz.ch/theses/ws0405/gclipse_report.p df

[2] http://live.eclipse.org/node/543

[3] http://www.battlecode.org/info/

[4] http://ssl.mit.edu/spheres/

[5] http://www.zerorobotics.org/web/zero-robotics/learn-more-history

[6] http://subversion.tigris.org/

[7] http://www.nongnu.org/cvs/

[8] http://git-scm.com/

[9] Miller, Rob. Semester Course. User Interface Design. Massachusetts Institute of

Technology, Cambridge, MA. Feb-May 2010

65

