

%

%/ '

0

%

,. H%

g 1"

.

'$

%

&

%

Oy
&

%

Contents

1

Introduction

11
1.2
1.3

Collaborative Editing
Player Programs
Problem Statement

Background

2.1
2.2
2.3
2.4

SPHERES e
Zero Robotics
Initial Standing of the Zero Robotics IDE
Initial Standing on the Collaborative Tools for the ZerdRobotics IDE

Backend Design

3.1
3.2
3.3
3.4
3.5

Locking Editor e
Merging Editor
Real-time Editor
Comparison e e
Decision

Frontend Design

4.1
4.2
4.3
4.4

User Interface Principles,
Principles for Player Programs
New Features e

Summary of Designs

Implementation

5.1
5.2

Backend Implementation L.
Frontend Implementation.

Testing

6.1
6.2
6.3
6.4
6.5

Clicktracking System
UserTesting
Survey Results
Clicktracking Results,
Conclusion

11
11
11

13

18

21
21
23
25

27
28

31

33
34
39

List of Figures

© 00N O 01T~ WN P

N P R R R R R R R R
O ©W O N U DM WNDNIEPRERO

Zero Robotics Projects Tab oL 13
Zero Robotics Editor View oo 15
Global Variable and Procedure Return Types 15
Zero Robotics Compilero 16
Simulation Settings Screen o Lo 17
Global Locks 19
Locked Project 19
Comparison of Three Dierent Backends 2
Original Zero Robotics UML Diagram 42
Updated Zero Robotics UML Diagram 43
Revision Status Display 45
Commit Comment 46
Status Marker Descriptions 0 oo 46
Status Markers 47
Individual Merge Messages 48
Merge Content 49
Updated Menu Bar 50
Merge All e 51
Clicktracking SQL Structure 38
Survey ReSpoNSes 62

1 Introduction

1.1 Collaborative Editing

Software systems are getting more and more complex every day order for software
teams to keep up with past development speeds, companies thise more developers
as well as nd innovative ways for them to collaborate. Proldms such as concurrency
control and code integration must be dealt with so that teamsan contribute to the
same project in parallel. This has given rise to much thoughabout collaborative
programming, where software teams have a methodology of wggng, implement-
ing, and integrating software for a single system. Severaladern solutions such as
Gclipse[1] and Cola[2] rely on real-time editing to deal witconcurrency issues as well
as provide instantaneous information. While they certainlyprovide useful properties,
in this thesis | investigate whether or not they are the idea¢diting environments for

player programs.

1.2 Player Programs

Besides complex software systems being developed in thevate sector, there are
other types of software projects that require a great deal oéam collaboration. Com-
petitions such as Battlecode[3], held yearly at MIT, allowa@ams of developers to de-
sign and develop a "player program” to compete in a computeragne. The details of
the game are di erent every year, but the challenge is alwaybe same. Teams must
combine battle strategy, software engineering and arti @il intelligence to construct
a player program to best their opponents. In doing so, teamsust learn and in-
corporate path nding, distributed algorithms, and netwolk communication in their

players. Even though the grand prize is the main driving forcér the contestants,

in the end, every player gains something from the competitiorit could be as simple
as being the rst time they applied their software skills to @ open competition to
gaining experience working with a team on a large scale sddive project to learning
swarm Al and A* path nding techniques. Competitions such as Btllecode are great
ways to encourage students to go above and beyond their baslass assignments to
create pieces of software that re ect their true ability, anl to hone their skills even

further.

It is clear that a great deal of collaboration must be put into @veloping these
player programs, but there is an insu cient amount of tools toallow developers to do
so. At rst one may try to apply results from existing collabaative editing research
papers to the IDEs of these player programs, but taking a stdgack, one can see that
player programs are a unique type of project. While all compitesoftware projects go
through iterative phases to continually improve themselhs player programs iterate
much faster and must remain in a "compilable” state. In ordefor a contestant of
a player program project to assess their player, they are usly provided with a
simulation tool that can run a match between two players at antime the contestant
wants. For this simulation tool to be of use, however, the coestant's project must
remain "compilable”. For example, if a contestant wants to e how changing the
value of a certain constant in their player program a ects tle outcome of the match,
they should be able to continually change the constant, resmpile their project, and
run the simulation tool. They should be able to do this as if thy were the only
person editing the project, even if their team is also workghon another piece of the
project. With this in mind, applying the real-time componentof emerging IDEs may

not necessarily be the best enhancement for developers wiagkon player programs.

1.3 Problem Statement

Developing player programs is a great way to get groups of skents interested in
programming at an early age, but the lack of a standardized kaborative environment
for these player programs greatly hinders the students aliies to work and learn
together. In this thesis, | will research the concepts and téothat will provide the
ideal collaborative tools for working on player programs. | il¥ then implement and
test my vision of the ideal editor. Lastly | will analyze and onclude my ndings for

potential future work.

10

2 Background

2.1 SPHERES

My thesis will be based on work performed on Zero Robotics, wh is one of the pro-
grams under SPHERES. The MIT Space Systems Laboratory develaltbe SPHERES
(Synchronized Position Hold Engage and Reorient Experiment&atellites) labora-

tory environment to provide DARPA, NASA, and other researchers wit a long term,

replenishable, and upgradable testbed for the validationf dnigh risk metrology, con-
trol, and autonomy technologies for use in formation ight andautonomous docking,
rendezvous and recon guration algorithms. These techna@s are critical to the op-
eration of distributed satellite and docking missions suchs Terrestrial Planet Finder

and Orbital Express.[4]

2.2 Zero Robotics

Zero Robotics is a robotics programming competition that ulizes the SPHERES
satellites inside the International Space Station. It wasreated in 2009 by the MIT
Space Systems Laboratory (SSL) and astronaut Greg Chamitavith the goal of open-
ing research on the International Space Station to large gups of secondary school
students[5]. The goals of Zero Robotics include buildinggiong skills in science, tech-
nology, engineering, and math. Much like Battlecode, Zerod®otics allows a team
to develop a player program that controls a SPHERE satelliteEach year the game
objective of Zero Robotics is di erent, but the topics involed are the same. Students
must apply their knowledge of mathematics, physics, and pgoamming to design and
develop a program to meet the game challenge. Currently steidts can access the

full Zero Robotics IDE in a web browser. There is also a simudian environment and

11

tool provided to the students that allow them to see how their @de will work in a
real match environment. Most of the competitions in the Zer&obotics tournament
are software competitions. They are held to continually efiinate teams to reach the
nal competition. The nals are then held aboard the ISS and he nalists code are

run on physical SPHERES.

With several rounds of competitions to submit players for, Ze Robotics contes-
tants must quickly iterate through versions of their projets in order to reach their
best project. Also, with the supplied simulation tools, it iSmportant that the projects
remain in a "compilable" state. With these requirements, Za&r Robotics projects t
the description of a "player program”. Since a single Zero Rokics team may consist
of up to 20 students, it is very important for the collaboratve tools provided by the
IDE to be su cient. In addition to a team having up to 20 students, the 2011 Zero
Robotics tournament also had a concept of alliances. After treecond competition,
the top 54 teams formed 18 alliances of three teams each. Gpforward from there,
each alliance was responsible for submitting one player gram for future competi-
tions. With a single team comprised of up to 60 students in theedi erent geographic
regions, it is even more important that the collaborative tols be su cient. My thesis
will explore the ideal editing environment for developing phger programs. Although
the collaborative enhancements | will be working on will beargeting the existing Zero
Robotics IDE, the lessons learned should be applicable fdayer program editors in

general.

12

2.3 Initial Standing of the Zero Robotics IDE

To better understand the editor | will be starting from, in this section | will provide
an overview of the Zero Robotics IDE. In the projects tab, use can browse their
own projects, browse projects that are shared by teammatesmd create new projects.
They can also access speci ¢ revisions of projects and ches share their projects
with teammates. A detailed guide of the main actions availablin the projects tab is

shown in gure 1.

Projects
Projects
My Projects Shared Projects a
[
Project Name Game Last Edited Revi Sharing glsltémated Code
Test Project AsteroSPHERES A BTS00 i Shared 0%
_ . Estimated 3
Revision Checked-in On Checked-in By Comment Status s
Code Size

8 15:54 EDT, 05-10-2012 sonnythai3 Quicksave Active 0% Openin IDE
/ 7 15:54 EDT, 05-10-2012 sonnythai3 Quicksave ReadOnly 0% Openin IDE

6 15:54 EDT, 05-10-2012 sonnythai3 Quicksave Read Only 0% Open in IDE

5 15:51 EDT, 05-10-2012 sonmythai3 Quicksave Read Only 0% Openin IDE

4 15:51 EDT, 05-10-2012 sonnythai3 Quicksave ReadOnly 0% Open in IDE
AsteroSpheres 14:14 EDT, 05-10-2012 -
project AsteroSPHERES by sonnythai3 1Show Mot Shared 0% Remove

Figure 1: a. Create a new project
b. Access projects and revisions
c. View or set shared projects

The more interesting features lie in the ZR IDE tab. Here we havelahe tools
that an editor requires to be su cient for developing player pograms. First, there is
a generic text editor in the middle of the screen. Currentlyte SPHERES API is only

accessible through the C programming language, and so usemsst only program in

13

C in this text editor. Users are only allowed one class le perrpject, but they are
allowed to create as many procedures and global variableghim the project as they
like (so long as the whole project is within a size limit). Vagble types are limited to
signed/unsigned chars, ints, and oats. Procedure returnypes and arguments also

have the same restriction, as shown in gure 3.

14

ZRIDE
ZRIDE Remember o save befo
File Edit Quick Compile Simulate

~ AsteroSpheres Procedure: void ZRUser(}
project
* Procedures E fg“' F 4) ¢ O Iﬂ n
Mew Procedure
ZRUser
ZRInit
* Global Variables
Mew “ariable

Figure 2: This is the view of an empty project in the Zero Robots

MNew Procedure

*Procedure Name: Type your procedure name
*Return Type: v void ¥
Arguments: Add Arg < voia
char
*Procedure Editor: e Text Editor int
float

Figure 3: When adding a new procedure, in addition to void, therare three valid
return types. These types also represent possible globaliedle types

15

Once the project is ready, the user can then compile it to ndwat any warnings or
errors that exist. A code usage percentage is also shown t@thser to remind them
to stay within the project size limit. After the project has beensuccessfully compiled,
the user can nally run some tests, or simulations, with it. A omprehensive popup
allows the user to set game constants as well as set a particutgpponent to run the
simulation with. With the feedback from the simulation, the ugr can re ne their

project and repeat the process to their satisfaction.

Compilation & 1 Warnings and @ 0 Errors are found Code Usage: 0%
Level Procedure Line# Message

MNIA MNIA variable "c” was declared but never referenced

Figure 4: The code is compiled server side and any warnings orogs are sent to the
user

16

Simulation Settings

*Load Settings: Select Settings ¥

*Simulate As: s SPH1 (Blug) 5PH2Z (Red)

*Maximum Time: 192 Seconds

*Game Variables: Default Values normasterk: 0
normastery’ 0
normésters: 1
gameTime: 0

acquiredLaseri: 0

acquiredLaserz: 0

acguiredDisruptor; | O

acquiredShield: 0
Attitude: 'SPH1: (04 | |06 |0 |1 |0
[SPH2 04 |i(-06 | 0 -1 |ifo

Opponent Empty Opponent
(optional): Select Opponent(s)

B concel

Figure 5. Users can simulate with custom settings to more e dgtly test their code

Along with a game manual, the ZR IDE is all a user needs to develap fully
functional Zero Robotics player. However, this task is too mah for an individual

alone. Teams of high school students along with a mentor spentbnths perfecting

17

every line of code in a project. Collaboration is an integrglart in developing a Zero
Robotics player program and the IDE must provide the necessatgols to make it

possible.

2.4 Initial Standing on the Collaborative Tools for the Zero

Robotics IDE

When the Zero Robotics 2011 tournament was o cially releaseth September, the
collaborative tools provided to contestants could be com@red the bare minimum.
Students were allowed to share their projects with their teapbut in order for anyone
to edit a shared project, a global lock on the project had to bebtained. This meant
that there could only be a single person actively working on gsci c project at any

given time. Non-lock holders could not even run simulationsith the existing project

code). All they were able to do was refresh the page to view thatést version of the
project. With alliances of up to 60 students, these limitatias were clearly a great

bottleneck in the development process.

18

ZR IDE Remember 1

File Edit Lock Simulate

Lock Project
~ Shared Project Please lock the project before editing.

* Procedures
ZRUser Procedure: void ZRUser(float myState[12], float othe

* Global Variables
o E | 9 ¢ 0 A

Figure 6: Global locks handle concurrency issues, but can gtlg hinder e ciency.

7R IDE Remember to save before chan

File Edit Lock Simulate

w Test Project Froject is locked by sonnythai.

* Procedures

ZRInit Procedure: void ZRUser()
FRUser

= Global Variables %é F 4) (" o lﬁ u _

Figure 7: Once a project is locked by one user, no one else cait gk project

Throughout the 2011 tournament several enhancements wereade to the Zero
Robotics IDE to assist project collaboration. The enhanceemts were limited to small

changes in order to avoid forcing a new IDE upon the users, btitey improve on at-

19

tributes that the ideal editor should certainly take into acount. First was the ability

to view the latest version of a procedure by simply clickingroit. This improved the

feedback system, since users normally had to refresh the \whpage to ensure that
they were viewing the latest version of a project. Next was thebdity to simulate

a project even if a lock was not held. With this, users withouthe lock could still
be very productive. They could gather useful data for the tem by seeing how the
latest version of a project fared against standard players(at were provided) or other
projects the team created. Although the existence of a globlalck still greatly slowed
down progress, this feature was a big step towards unconstrad editing. Last was
the addition of a chat room system where each project was itsvo room. With this,

users could see who else was viewing the project in real-tisned communicate with
them about the project. Instead of having to coordinate the se of another chat
system or communication tool, users were provided one thatt@matically placed
them in the same room as others viewing the same project. Thaddition was a great

enhancement in providing real-time feedback.

Although the Zero Robotics IDE took a huge step forward with tese enhance-

ments, it was still far from being considered an ideal collabative editing environ-

ment. In the next two sections | discuss my designs for turnintpis into a reality.

20

3 Backend Design

The main issue with collaborative editing is currency contl. When researching
di erent types of editors, | came up with three potential idel editors for Zero Robotics
that approach this problem di erently. They all solve the problem, but still have their
own strengths and weaknesses. They are a locking editor, argieg editor, and a

real-time editor.

3.1 Locking Editor

A locking editor is a simple, yet e ective way of dealing with oncurrency control.
In order for a user to edit a project, that user must hold the prjects lock. There
is only one lock per project, and so this naturally limits onesditor of a project at
any given time. With these conditions, concurrency controlsino longer a possible

problem since there cannot be concurrent updates to a projec

One major strength of a locking editor is that locking is a carept that rst-time
programmers will easily grasp. A simple metaphor is that thre is only one computer
to work on. Multiple teammates can look on the screen (read eess), but there can
only be one person actively working on the project (write aess). While locking in
general does pose some more complicated situations, sucldeadlock and livelock,
this should not be a problem since users will not be able to agbh more than one

lock at a time in the Zero Robotics IDE.

Although a locking editor solves the problem of concurrencyatrol, another prob-
lem that arises is that the way it solves the problem is alsostbiggest weakness. By

not allowing multiple writers at once, users cannot step ovexach other, but this also

21

greatly limits e ciency. The previous metaphor becomes a redy. Even though there
may be multiple computers for a team to work with, the concepof locking limits

them to one user editing a given project at a time.

The limitation of a single writer may instantly deter most from choosing a locking
editor, but there are many enhancements that can be made to prove the e ciency

of a simple global lock design.

The granularity of locks in the ideal locking editor should b exible or depend on
the applications that are being developed in it. In the casef @ero Robotics it makes
most sense to have element level locking, where an element igracedure or global
variable. One could even wish for the granularity to extend tdine-level locking as
well, since the majority of users are high school studentsahmay not have much
experience with procedures. Either way, the properties oflacking editor remain the
same. While one user has a lock on an element, the user is theyomhe allowed to
make modi cations to it. However, other users are still abled view the element while

it is being modi ed.

Zero Robotics currently also has a notion of "stealing" a I&c This means that
the stealer obtains the lock and the original holder no longdras the lock, with no
modi cations to either users' view of the project. This can kb useful if a user forgets
to release the lock, but can also be dangerous if users are notefal. Work may
be lost if the original owner of a lock does not realize that #y have lost it. In the
ideal locking editor, each element will have a bu er associadewith it. When a user
obtains a lock on an element, they "own" the bu er for that elenent. Changes they

type will stream into the bu er and when they save, the bu er will be cleared. With

22

this system, if user A steals a lock from user B, user A will retve the bu er and
user A's screen will be updated to re ect those changes. Theteatial work lost from
stealing locks is now gone. With a locking editor, complex coarrency problems are

eliminated in a simple way.

3.2 Merging Editor

A merging editor would resemble many of the Version ControlyStems(VCS) that are
in use today. Systems such as Subversion[6], CVS[7], and Qitli8e a Copy-Modify-
Merge protocol where users rst copy a version of a project im a repository into
their local workspace. After modi cations to the project aremade, the user must
merge in changes from the latest version of the project and obge any con icts that
may have arose from other users updating the project. When theerging step is
complete, this ensures that the user's version of the projebas the latest changes

and nally the user is allowed to submit the latest version othe project.

The ideal merging editor for Zero Robotics would work in a sitar fashion. When
users view a project, they immediately check out a copy of th@oject. They are free
to do anything with the project, as if they are the only ones ating it. They can
edit and save the project as well as compile and run the simtilan tool on it. If
their version of the project is up to date, they are allowed tcommit new revisions of
the project. However, if there are con icts between the latés/ersion of the project
and the current view of the project, the user may have to penfm manual con ict

resolution in order to merge and commit a new revision of thecode.

The major advantage of a merging editor is that a single progécan have multiple

23

concurrent editors that do not interfere with each other. A €am can optimize one
section of their code, test another section, and add a new 8en all at once. For
development of a player program, this is a great plus becausme is often an impor-
tant factor of the competition. By being able to edit in paralel, development speeds

are greatly increased, iteration time is reduced, and ultimaly the end result is better.

While a merging editor can bring numerous advantages to Zero Ratics, there
are important aws to consider as well. The concept of persah copies, latest revi-
sions, reference revisions, and merging may be complicagbugh to scare away high
school students as well as any rst-time programmer. Befora new user can jump
into Zero Robotics and get their hands dirty with some initih development, they
will need some basic understanding of the versioning systerilaving to learn this
as well as general programming, more advanced mathematigsdgphysics, and the
ZR APl may be a daunting task for most high school students. A send aw is the
merging of conicts. This is a process that requires human t@rvention to sort out
code manually. Because multiple users are able to edit the samproject as if it were
their own, there are situations where the editor simply carot detect the correct nal
state without human input. This requires a human to spend thie time tidying up
existing code instead of developing new code. Even in the fassional world, some de-

velopers dread the unavoidable moments when they must mariyamerge their work.

Since the major problems with a merging editor are its lack ofrsplicity and its
time consuming merging mechanism, the ideal merging editbas features to solve

these problems, as opposed to further increasing e ciency.

To deal with the problem of simplicity, the user interface othe ideal merging

24

editor must be very intuitive. Enough information must be povided to the user so
that they do not need to actively search for it on their own. Tlere must also be a
limit of the information shown, to keep the interface simple ad uncluttered. To solve
the merging problem, a clean, intuitive merging user inteace will also su ce. With
a strong backend design such as a merging editor, e ciency atomatically gained
and the major design decisions lie in the front-end. Anotherrgat bene't is that
since Copy-Modify-Merge systems are in great use today inethworkplace, users will

be able to easily adapt into and from other popular VCS.

3.3 Real-time Editor

A real-time editor is an elegant solution to concurrency cortl. Instead of creating
addition tools to restrict access or sync revisions, a retine editor provides full ac-
cess and perfect synchronization with all users viewing avgn project. In a real-time
editor, right as one user makes a change to the project, thah@nge is instantly prop-
agated to all other users so that everyone sees the change a&veryones views are
consistent with each other. The change can be the addition ah element, deletion
of an element, or even as small as one character change in amant. It will be as
if several users are connected to the same computer, but thegch have their own
keyboard, mouse, and screen. They are allowed to individliahavigate through the
project and make edits, but since they are on the same computé¢here is only one

state of the project that they all see.

With this perfect synchronization, concurrency control is o longer a problem.

Even if two users attempt to edit the same element at the sameéme, with granular

enough timing or a clever scheme, we can determine which uséempted the edit

25

rst. If it turns out that the second edit overwrote the rst e dit, this will be apparent
to both users because they both would see this immediately. dbth users are simply
typing text in the editor, they would quickly write over eachothers' text, but they

would also immediately see it and be able to resolve the prelhs that arise.

The real strength of a real-time editor is the ability to dealwith the problem of
concurrency without adding any overhead to the users. They dwot need to worry
about managing locks or merging in code. Editing a shared peat with multiple
teammates viewing the project is as similar as editing an unsfeal project. Users
are constantly provided with information about their current collaborators and their
edits. This type of editor closely resembles emerging editadgscussed in the intro-
duction. With a real-time editor, users have access to a natail; highly responsive

interface just as if they were physically working in the sameoom together.

However, a signi cant drawback of a real-time editor is that agiven project may
not be in a compilable state for a long duration. If there are seral editors on a
single project, it is possible that they are all editing theiown procedures. If the rst
user that nished their changes wanted to test their code throgh a simulation, the
user would have to wait until the project reached a compilabl state. Since several
users are typing text into their procedures, this may not hagpen because any syntax
error would break the compilation. It may be possible that therst user must wait

until the last user has nished their changes in order to testheir code.

While the ideal real-time editor would not have to add any featres to deal with
concurrency control, it would need some to address theseuss of compilability. Since

it is not trivial to determine speci c states of a project one it is under a real-time

26

editor design, these features would have to be highly compleX project may be un-
compilable because of a certain section of code that has beelited by several users in
several di erent points in time. A user friendly feature wold have to be designed to
consider this and allow the user to compile with a great amourtf exibility. Similar
to the merging editor, a real-time editor has e ciency builtinto the backend, and an

ideal version only needs to improve upon the front end feates.

3.4 Comparison

While these three editors su ciently tackle the problem of cocurrency, they each
have their own strengths and aws. A locking editor is a sim@ solution that solves
many issues, but requires users to perform additional steps actually obtain a lock
for the elements they wish to modify. It also restricts the nonber of concurrent edi-
tors of an element to one at a time, which can greatly hinder pductivity. A merging

editor may seem to be very unrestrictive at rst, but manual on ict resolution can be

a dreadful task in the software world. Understanding the degin of a merging editor
may also be non-trivial for a beginner programmer. A real-tim editor is an elegant
solution, but it may leave the project in an uncompilable st for long periods of
time. Multiple users will be able to edit in parallel, but ony test serially. The chart

below summarizes the strengths and weaknesses of each edito

27

Realtime text editor Checkout editor Locking
editar

No additional steps needed to 1w/ ,/
modify an element
Mo need for manual merging V/ V/
Compilable "V/ "V/
User do not need to make choices V/ \/
doout updating their project
Multiple editors of elements \/ V/
Highly responsive and informative U1 \/ ,./

Figure 8: Each row represents a positive feature of the editoAlthough the real-
time editor has the most features, being compilable is a keyag of a player program
editor.

3.5 Decision

Without the ability to allow multiple users to edit the same elenent at the same
time, a locking editor is not a true collaborative editor. Tke existence of a global lock
would hinder development speeds since this would only allane editor at a time.
As the locks become more granular, it is possible for users tditedi erent parts of
the same element, but the overhead required to manage thesekKs also increases. In
order to make edits to an element, a user must lock a section afde or the signature
of the element. If users forgot to release locks on parts theyere working on, this
can slow down other teammates that are waiting for the lock tbe released. Deletion
of elements can become a nightmare if other users have locksamil are continually
editing the element. Overall, the necessary work requiredrfthe user does not make

the ideal locking editor the best overall collaborative editr.

It is evident that real-time editors have a great number of aehntages over tra-

ditional editors through their emergence in the workplace.However, due to their

lack of compilability, they are not the best collaborative etor for developing player

28

programs. Being able to compile a project, run simulations Wi it, and evaluate it is
a critical part of player program development. This is how thy are tested and just as
it is with any other software project, testing is very imporant. This is especially true
for player programs because of how involved testing is in tlievelopment process and
how iterative the process is. Without compilability, develpment on a real-time editor
can even be slower than a locking editor. A user will only be abte simulate their
code if the whole project is in a compilable state. This may bei cult to achieve

if multiple teammates are all editing di erent parts of a prgect at once. Even once
the last user has nished their changes, others may have moved t work on new
sections. Any features to improve compilability would add gni cant overhead to
the user. With only the active view of the project, it is di cul t to see how a user
could test only their changes. All in all, the lack of compilaliity of a real-time editor

greatly limits its performance when working with player prgrams.

| decided to proceed with a merging editor design, but also ioporate real-time
features wherever possible. According to gure 2, the major s of the merging ed-
itor are its complexity, its need for manual merging, and thevork required to update

a project.

The complexity can be especially daunting for a program sucs Zero Robotics
because the user base may contain rst time programmers. Hoves, with the use
of e ective tutorials or a tooltip system, this can be conveed into a perk. Learning
how to use one of the most popular VCS can certainly be helpful the future. |
plan on creating tests to evaluate how new users adjust to tleystem, but leave it to

future work to create mini lessons on how to use it.

29

Manual merging is often feared because the interface it isgsented in is confus-
ing, or even worse, it is in a command prompt. This can be sobvef an intuitive
interface is provided to the users. Con icts must be clearlyoted, and the options
provided must be clearly visible and exible. Most importanty, the user must not be
overwhelmed with information or available actions. | will deelop my own interface

for manual merging that will take all of these points into cosideration.

There are several parts considered in the work required to date a project. First,
the user must be alerted that there is a new revision of the pregt. This must occur
in a non-obtrusive fashion. The user should then be able to chout which elements
have been changed in the new revision. Lastly, it should be up the user to choose
to accept them or not. Keeping all of this in mind, a friendly uer interface can turn
the process of updating a project into a simple task. | will alsmclude these features

in my collaborative editor implementation.

With the problems of the ideal merging editor solved, the bestdzkend design for

editing player programs is a merging editor.

30

4 Frontend Design

4.1 User Interface Principles

When developing the front end of any application, it is importat to follow a set of
user interface design principles or heuristics. Some go hgredard heuristics such as
Nielsen's Top 10, while others follow their own guidelines. VWthever set the devel-
oper chooses to use, | believe there are four overarching Uingiples[9]: learnability,

visibility, e ciency, and errors.

Learnability describes how long it would take and how e oréss it would be for
a user who has never seen the interface before to become famiith it. Complex
systems clearly require more complex user interfaces thample systems, but a front
end developer following good learnability principles canegign a complex user inter-
face as learnable as a simple one. Wizards and tutorials are r@a way to for a
rst time user to be stepped through the most important featues. Metaphors and
a ordances allow completely new tools to be as intuitive asraeveryday task. But
the most important part of learnability is keeping the memoy required of the user
low. If the user does not need to remember having used the irfeece in the past in

order to e ectively use it, then the user interface is highlyjearnable.

Visibility is all about what information is shown to the user. The interface can
show possible actions the user can take, the state of the irfce, or provide feedback
from a user request. A visible user interface provides as nuioformation as possible
to the user without overwhelming the user. It must keep a batece between showing
too little information and appearing too cluttered. If a cetain tool is not immediately

accessible on the screen, it should at least be easily foundhm a few clicks. This

31

is often achieved through menu bars and other dropdowns. A rectly visible user
interface would be able to predict the user's next action, @ahimmediately bring forth
the necessary tools as well as hide irrelevant informatiollthough this may not be
achievable for user interfaces today, there are still manyays to bring about high

visibility.

An e cient user interface is one that allows the user to complet their task in
a reasonable amount of time. The tools provided in one must eaclave a unique
purpose and never be repetitive to use. If a certain featureust be used multiple
times in order to complete a single task, the developer shduleconsider the use cases
of the feature and possibly improve it to better t those use ases. Another metric
for e ciency is the accessibility of each feature. Properés such as size and location
and heuristics such as Fitts's law help determine how easilyn@ quickly a user can
access the feature. Keyboard shortcuts can also improve upihis property. Just as
in the visibility section, predictive logic can improve e ciency. An example is the well
known autocomplete feature. By suggesting common resposige previous responses,
a user will not have to type out the full text of a query. At the bare minimum, a truly
e cient user interface has tools to speed up repetitive taskand grants easy access

to those tools.

Errors are an often forgotten yet very crucial part of a usemterface. They cause
can originate from the user (ex. leaving a required eld blég or come from the
application itself (ex. server is down). In either case, ers will occur in all user
interfaces and it is important to handle them appropriately Instead of letting the
system fail or alerting incomprehensible error codes, praperror handlers should

explain the error in laymen's terms to the user. In the case ofrall errors, the in-

32

terface should suggest ways to avoid the error in the futurdf a more pressing error
occurs, constructive methods of resolving the error shoulcelpresented. A step be-
yond error handling is error prevention. Instead of develapg ways to x the error,
it may be possible to stop the error from ever occurring. An exaple is disabling a
form's submit button until all required elds are lled out. With this approach, a
user interface does not force the user deal with an annoyingpm. The user will

automatically realize a part of the form is not complete andwid the error altogether.

While I will incorporate all of these principles in my fronterd design, | will focus
on the ones that will have the most impact on player programdearnability, feedback,

and e ciency.

4.2 Principles for Player Programs

Learnability is the most important principle of a user inteface that is designed for
developing player programs. This is mainly due to the short dation that a player

program competition lasts. They often run for only a single onth up to a few

months. In this time, participants must learn a brand new API, évelop strategies,
and iterate countlessly to perfect their player. The time andocus needed to learn a
new editor can greatly slow down a team's progress. Learnbfyiis especially impor-

tant for Zero Robotics because of the nature of the user basBero Robotics teams
are often composed of high school students with little to nodgkground of program-
ming. In addition to learning the other topics (physics and dvanced mathematics)
required to create a functional Zero Robotics player, studeimay be encountering
"if" statements for the rst time. Any early frustrations wit h programming concepts

or the programming interface can easily turn away students fdife.

33

Feedback is the next most important principle. The main dishction between
editing a normal project and editing a game player project ithat one would expect
a player project to be edited simultaneously by multiple teammates more often. Be-
cause of this, the state of the project is more constantly chgimg and it is important
that the users know about these state changes. A user may haadded, changed,
or deleted elements that are crucial in another user's cumework. It is important
to acknowledge the latest changes and decide whether the raumnt development work
is a ected by those changes. It is possible that the newest wildopments make the
current work obsolete, in which case it is much more helpful tearn about it sooner
rather than later. With enough feedback from the system, usemwill continually be
up-to-date on the state of their projects and will feel con det that their current

development will actually improve the projects.

E ciency is also crucial for player programs. Because of thehort duration of a
player program competition, it is important to provide the neessary tools to make

the users' development process as e cient as possible.

4.3 New Features

In order to make e cient use of the new backend system, a whokuite of new fron-
tend tools will be required. In this section | will describe he new features being

added as well as which principles they improve.

The rst new feature is a revision status display. With the newmerging backend

editor, users will have personal working copies of a projecalled "drafts" which will

34

reference speci c revision numbers of a project. Any draft nstireference exactly one
existing revision number of a project (henceforth known as r@ference revision) and
a user may only have one draft per project. This will allow futre tools to under-

stand where this draft exists in the revision ladder. Anothermportant revision to

take into account is the "latest revision”. This is the most p-to-date revision of a
given project. Knowing a user's draft's reference revisiorumber as well as the latest
revision number will better help the user understand the sta of the project, and

this is exactly what the revision status display is for. Becae of the importance of
the information is displays, it will be located in an open andlearly visible area on
the interface. It should also update in real-time to provideas e ective feedback as
possible. Whenever a user updates their reference revisitme status should update
accordingly. Whenever another user commits a new latest rsion of the project, the

status should also update immediately.

In the existing version of Zero Robotics, every "save", "copile”, and "simulate"
action creates a new revision of the project. In the new mergjreditor, "saves" will
only save to a user's draft. A new "commit" action will used forcreating the latest
revisions of a project. Due to the necessity of a commit actipits button should be
placed in a highly visible area such as the menu bar. The newssgm of allowing
users to commit latest revisions on their own without holdig a lock can pose new
problems. For example, if "User A" is unaware or forgets to nate that "User B" has
created a new latest revision, "User A" may commit their own latgt revision without
pulling in the latest changes. This can potentially wipe outll traces of "User B™s
changes in the latest revision. Another version of this probin can occur even if two
users are highly attentive to the revision status display. flthey both commit new

revisions within the same second, one of their commits willewitably be overwritten

35

by the other one. In order to prevent this scenario, | have csen to perform a check
on all commit actions. A commit will only be accepted if the usr's draft references
the latest revision. This is to ensure that the user has the tiast copy of the project
and has received all changes from commits. With this check, ti@o aforementioned
scenarios would no longer be possible. The latest commit idudail because their
draft no longer references the latest revision. The user mugpdate their draft to

receive the changes from the latest revision before they aile to commit their own.

This xis a good addition to the error preventative methods 6the new user interface.

As described above, users will need a tool to update their dtab bring in changes
from the latest revision as well as update their referenceuvision. | have chosen to
combine both of these into a single action. That is, in orderotupdate a draft's ref-
erence revision to the latest revision, the user must also rew the changes brought
about by the latest revision. The user may very well decide teeject all changes pre-
sented to them (potentially overwriting other user content, but they will be know-
ingly making that decision. In order to present all of the chages brought about by
the latest revision and provide the exibility to allow the user to accept/reject each
one individually, a well designed pop up interface is neededt must be learnable,
visible, and e cient. More details about this interface is described in section 5.2.
Upon successfully deciding which changes to keep and which tgadrd, the user's
reference revision will be updated and re ected in the revin status display. The

user will now be able to commit their own changes.

With a tool to update a draft to the latest revision, it would be helpful to know
in advance which elements are actually out of date. A user mde focused on one

section of the project when the user notices that a new latestvision of the project

36

has been committed. If the changes are in a separate sectitte user may decide to
ignore them for now to concentrate on their current work. Howeer, if the changes
are within the user's section, it may be worth grabbing the chages now rather than
later. To provide this useful feedback, | envision a status anker next to everything
that can change within a project. For Zero Robotics, this maes a marker next to
each element. Instead of having just an on/o mode for this m&er, | have decided
to allow it to display di erent states with di erent colors. Rather than having to
understand several di erent symbols, users will be able tagsp the same knowledge
with di erent colors. | have chosen colors because the humaye can much more

easily distinguish color than shape.

There are three main statuses that an element can be in. The & the up-to-date
status. This means that the draft version of the element exalgt matches the latest
version of the element. There is no requirement that the rafence revision match the
latest revision. For a global variable, exactly matching mews that the sign, the type,
the length, the initial value, and of course the name all matc In the remainder of
this paper | will refer to all of these as the signature of theariable. For a procedure,
exactly matching means that the return type and all aspectsfall arguments must
match. These will also be known as the procedure's signaturi addition, the pro-
cedure's text content must match. To show an that an elemensiup-to-date, | will
provide a green marker next to the element. | chose green basa it is often used
as a sign in user interfaces to describe that all things are ggiwell, such as a green
check mark. The next obvious status is a out-of-date status his will mean that the
draft version of the element does not match the latest versiaof the element, as well
as the reference revision does not match the latest revisiofihe point of this status is

to show that there is a later version of the element that has swe changes to it. The

37

change can be as small as one character di erence in the edito the whole element
being deleted. For this status | will use a red marker. Red idten used in world as a
warning or cautious color, such as in stop and danger signs. Appopriate warning
is warranted for elements that have a red marker since it mearthat the elements
have changes to them and an update should be performed befooatinuing to work
on them. The last status is an edited status. It means that thelraft version of the
element does not match the latest version of the element, btite reference revision
does match the latest revision. Instead of showing that aneér user has committed
changes to the element, this status designates that the useas uncommitted work.
This will be a good visual reminder for users who are new to a ngag revision
system. These users often keep their work in the draft, comtting only once when
everything is nished. The status marker will continually remind them to commit
once they have something working, which is generally a bettpractice in the work-
place. | have chosen blue to represent the edited status. Atithgh blue does not have
a consistent meaning in user interfaces, it is the third adtive color and should not
get confused for the other green or red statuses. Just like thevision status display,

the status markers should update in real-time to provide vahble feedback to the user.

When red status markers appear, users know to update their gext to grab the
changes from the latest revision. However, a user may be urimid to be brought
away from the user's current task to update their project if hey see that there are
many changes to deal with. To x this problem, | will also add mdividual element up-
dating. Users will be able to update single elements when thege red status markers
appear. Although the reference revision will not update urtithe user performs an
update on the whole project, users can view the changes thatsagle element has

undergone without having to deal with the other changes of thlatest revision.

38

The last user feature is another common VCS tool, reverting. \Wi the new merg-
ing backend, each draft has a well de ned reference revisioReverting elements in a
draft will bring them back to their reference revision state This is a great example
of providing tools for error handling. If a user changes an aent several times while
testing, but then would like to remove all of the changes, rextng the element will

do just that.

4.4 Summary of Designs

To summarize the list of design decisions, below | describeckahange or new feature

that is to be added to the system.

Drafts: Users will no longer directly edit revisions of a pr@ct. Instead, they
will work on personal drafts of projects. These drafts willtart o from a specic
revision of a project, known as a reference revision. Userdl\we able to update their
reference revision to point to later versions by updating thedrafts.

Locks: Since users only edit their personal drafts, lockseano longer required.
The notion of locking will be completely removed from the ene system.

Revision Status Display: This display will show a draft's rerence revision as well
as the project's latest revision numbers. It will automaticdy update in real-time and
will be easy to locate.

Commit Button: The commit button will be used to create the ldest revision of a
project. It will take a copy of the user's draft and append it b the project's revision

list, creating a new latest revision. In order to use it, a us&rdraft's reference revision

39

must match the current latest revision.

Status Markers: Each element in a project will have its own atus marker to
display its state. It can be up-to-date with the latest revigon(green) or out-of-date.
When it is out of date, there are two sub-states. If the referee revision matches the
latest revision, then it is in the edited state(blue). If thereference does not match,
then it is in the missing changes state(red). These status mkers will also automat-
ically update in real-time and be easy to see.

Element Merging: When elements are missing changes, userb ag¢ able to per-
form a merge on them. There are many ways in which an elementnche missing
changes, and the actions to merge them are specic to each €asThe details are
discussed in section 5.2.

Con ict Merging: Con icts occurs when the user has made chayes to the content
of a procedure but the latest revision also has di erent coent. Resolving the con ict
is not a simple task and will require a well-designed interfa to get the job done.

Merge All: Rather than merge individual elements at a time whea draft is out
of date, users can use the merge all tool to update all elemetist are out-of-date
at once. Upon successfully merging all, the reference revisaf the draft will update
to point to the latest revision of the project.

Reverting: Users will be able to revert elements to bring therback to their ref-

erence revision state. All properties will be changed back.

40

5 Implementation

With a strong set of backend and frontend goals, | will delve to the implementation

details.

5.1 Backend Implementation

In order to turn a locking editor into a merging editor, seveal changes need to be
made. Locking needs to be removed, personal drafts need todreated, drafts need
to link to a reference revision, and the server must keep reds of the latest revisions
of projects. Fortunately, with some clever logic, only one tde in the database needs
to be modi ed to add one eld in order to accommodate these clmges. Shown in
gures 9 and 10 are the before and after UML diagrams descrilgrthe parts of the

database that handle projects and their components.

41

Project Procedure
<< pk =>-projectld:long =< pk ==procedureld:long
-projectMame:String -name;String
-gameld:long -return Type:String
-createdBy:long -code Text:String
-createdOn:Date -hllJsanText:String
-mode:int -uses@raphicalEditar:boolean

=< gustomn-field == arguments:List<Argument>

Rewvisian
<< pk ==-revisionld:long

-checkedinOn:Date

Argument
-checkedinBy:long << pk ==-argumentld:long
-revisionMumber:int -name:String
-prajectld:long -type:String
-comment:String -procedureld:long
-hlldsonText: String -arderint

<< gustom-field ==-procedures:ListeProcedure=
<< gustom-field ==-variables:List<Globalvariahle>

@ GlobalWariahble
<< pk ==-globalVariableld:long
-name:5tring
RevisionProcedurefssaciation -type:Sting
<< pk »=-revisionVariableAssociationld:long -length:int
-revisionld:long -initial\Value:String
-procedureld:long
Projectlock
RevisionWariableAssociation =< pk ==-projectlockld:lang
<< pk >=-revisionVariableAssociationld:long L ;
i -projectld:long
-rewsn:nnld..lcnng faekedylang
-globalWariableld:long R DR

Figure 9: This UML diagram shows only the tables related to pregts in the original
database.

There are individual entities for each of the element typess well as a project
itself. Arguments are tied speci cally to the procedure that tley were created for.
To associate a project to its elements, a revision table is useThere are then two
association tables to associate speci ¢ procedures andligbvariables to each revision.
With this setup, minimal space is required as the number of r&sions grow. Instead

of duplicating whole projects for small changes in revisionge only need to create a

42

revision entry and the appropriate associations. For lodkg, the system keeps track
of a ProjectLock for each project. When users acquire locks tireir projects an entry
is inserted into the table. When users release their locks,dlrentry can be deleted.
In order to turn this locking system into a merging system, weimply need to add a

boolean eld to the Revision table.

Project
<< pk *=-projectid:long

Procedure
=< pk ==-procedureld:long

-projecthame:String -name:String

-gameld:long -return Type:String

-createdBy:long -code Tesxt: String
-createdOn:Date -hllJson Text: String
-mode:int

-usesGzraphicalEditorboolean

=< gustomn-field == arguments:List<Argument=

Revision
<< phk ==-revisionld:long
-checkedinCn:Date

Argument
<< pk ==-argumentld:long

-checkedinBy:long

-revisionMumber:int -name;String

-projectld:long -type:String
-camment: String

-hlldson Text: String

=2 gustom-field >=-procedures:List<Procedure>
== gustom-field ==-variables:List=GlobalWVariable=

-draft:Revision O FlobalWariable
=< pk =x-globalVariableld:long

-procedureld:long
-orderint

-name:String

RevisionProcedurefssociation -type:Sting
<< pk ==-revisionVariableAssociationld:lang -length:int
-revisionld:lang -initialValue:String

-procedureld:long

Frojectlock
<< phk ==>-projectlockld:long

RevisionWariableAssociation
<< phk ==-revisionariableAssociationld:long

-projectld:lang
-revisionld:lang ke sy noa

-globalariableld:long locksdOn:Date

Figure 10: This is the updated database. Locks are no longeqtered and a boolean
eld is added to the Revision table.

The ProjectLock table is also no longer needed, but | have cken to keep it for

43

potential future use. Instead of creating a new table to handluser drafts of projects,
we can cleverly reuse the Revision table. With this system, awision is a user's
personal draft if the draft eld is equal to true. If it is false, then it is a committed

project revision. The checkedInBy eld refers to the user whoommitted a revision
if the revision is a draft and it refers to the user who owns thdraft otherwise. All

of the other elds remain consistent with each other and so th dual use is valid.
To nd out the latest revision of a project, one only needs to gery for the largest

revisionNumber with the correct projectid.

5.2 Frontend Implementation

In this section | will describe the new frontend features thawere developed to ac-
company the new backend system as well as the challenges | eaanross when doing

so. To recap, the list of features discussed in section 4.3reve

-Revision Status Display
-Commit Button

-Status Markers
-Individual Merging
-Merge All

-Element Reverting

The rst feature was the revision status display. This was aimple feature, but
it was important to present it in a highly visible section of tre interface because of
the usefulness of its information. In order to allow it to aubmatically update itself

without any user action and in as close to real-time as pos&b | used a recursive

44

AJAX call. This would poll the server for information on the lates$ revision status.
On a successful callback, the client would queue up the same AJAAl to be executed
in 10 seconds. Although the updates would not occur in real-ti a 10 second delay
is acceptable.

My revision reference: 0
Latest revision reference: 0

ZRIDE

i My rEvision rfemnce O
£ Ledes! mwislon misenoe O

el Umck Compsie Somasiute Wz e & Ut

Dt ot roosdun: woad O Sica miSttel 11] Sicat otherStetel 1] Soat Sl

e | o Fl e 0O & o ®m

a IR ver
= U cke W
e

Figure 11: The top right section of the IDE was a clear, open spthat users could
refer to for useful information. | chose to place the revisiostatus display there with
bright red text.

The next feature was a commit button. Since | anticipated a kgh usage rate for
this button, it made the most sense to place it in the menu barlangside the other
most commonly used tools. As an addition to the previously daed commit button,

| also added a required comment to enforce good programmingaptices.

45

Commit Revision

*Comment:

Cancel

Figure 12: Providing a description of the changes involved in@mmit is an example
of good programming practice. This will allow other users tsee what has changed
from one revision to the next just by reading the comments.

The next features were the ones that deal with individual eteents. Figure 13

concisely summarizes how status markers were determined étements.

Green Blue Fed

Elementzmatch

Feference matches X
X

Elementzmatch
Feference doesnot match
Elements do notmatch X
Feference matches

Elements do notmatch X
Feference doeznot match

Figure 13: It is important that the di erent statuses have clar states that will not
overlap with each other.

46

ZRIDE

File Edit Quick Compile Simulate Merge All

+ Test Project Procedure: void calculateDistance()

* Procedures
Mew Procedure E fg" F {)'

= ZRUser

"' calculateDistance

* Global Variables
MNew “ariable

Figure 14: In this example ZRUser is up to date, but calculateBiance has been
edited in the latest revision.

However, since elements can dier in many ways, individual @nent merging
quickly grew complex. Global variables can dier in sign, tge, length, or initial
value. Procedures can di er in content, return sign, returrtype, or any part of any of
the arguments they contain. To simplify the choices users had make, | treated the
sum of the changes in a signature as a single change. With thidipg the number of
possible di erences was greatly reduced. Figure 15 descshbihe messages that are
displayed to the user for each type of change. Each messaganswered with the

same Yes/No popup to keep consistency across the interface.

a7

Procedure Global Vanable
Added None None
Deleted “Thiz procedure hazbeen deleted. Do “This vanable has been deleted. Do you
yvouwant to delete this procedure?” want to delete this vanable?”
Signature “Do youwant to tum yvour version of “Do youwant to tum your version of the
Change the procedure: vanahble:
mt getDistancel) mt curentDistance
to thelatest version of the procedure: | tothelatest version of the varable:
float getDistance() 77 float cumentDistance 77
Content Separate popup N/A
Change

Figure 15: These are example messages when a user tries to margelement under
a certain type of change. Adding does not display a message dgse the elements
are automatically added to the draft. There is a separate pap for content changes
in procedures because of possible con icts.

To perform the merging action on each individual element, me buttons were
placed next to existing edit buttons. | also enabled clickiop on the status marker
itself to perform the merge. To signal that a new element exssin the latest revision,
red status markers appear next to the corresponding "New Elem# button. Once
clicked, the elements will be automatically added into the ft. Although this may
not be immediately clear to new users, it is a consistent anaigcise way to provide
the feature. For content changes in procedures, con icts naeasily become complex.
| have developed a dedicated popup interface to handle thagpes of element merges.

One of the most di cult parts of using a merging editor is restving con icts.
The biggest problem is that the user resolving the conict mga not immediately
understand the new latest changes and how to merge them intoet user's own changes.
Another important factor is that user interfaces are often alttered with information,
making them hard to understand. | have designed an interfac@dt only contains the
necessities to keep the interface simple. It clearly preserthe options available to
the user and even allows for some exibility. A detailed exapie is shown in gure

16.

48

-
Merge Content
Final Version 1 Use My Revision @ void calculateDistance()
1 stayinplay(myState+10); = HJaser[0=1.0;
2 laser[1}=1.0;
laser[2]=1.0;
3 indigens[0]=0.0;
4 indigens[1]=0.6myfile;
5 indigens[2}=0.0;
B
T
1 Use Parent Revision
8 opulens[01=0.0;
9 opulens[1]}=-0.6;
10 opulens[Z]=0.0;
1
12 section added by latestfile
13 section added by latestfie
14 section added by latestfie
15 4 Use Latest Revision () void calculateDistance()
e laser[0]=0.0;
! Jaser11=0.0;
17{ laser[2]=0.0;
18
4 n b
_s

Figure 16: To help simplify the content merging process, theterface is as simple as
possible.

In this popup, con icts are clearly denoted with large red sgions. When clicked,
the three areas on the right: "My Revision", "Parent Revisio", and "Latest Revi-
sion" display their own versions of the con icted region. Theiser can clearly compare
the sections on the right and decide which one to pick. Oncedhappropriate "Use"
button is clicked, the corresponding text is transferred @r to the con ict box and
is now highlighted green to represent a resolved con ict. Fadded exibility, | have
made the green area an editable textbox so that the user can edght inside the
popup. Users may not want any individual version of the elemgrbut instead want
a mixed copy. The textbox will allow the user to freely add cdent to the region

while all three versions are clearly visible on the right.

49

To determine conicts, | used Unix's di 3 utility. When given tw o copies of a
le and their ancestor version, "di 3 -m" is able to produce amerged output that
contains both sets of changes with clearly marked con ict ggons. | was then able to
take that merged output and parse it into sections of the sameode and sections of

di ering code to feed into my "Merge Content" interface.

Finally, | added a feature to merge multiple elements at oncéhis button would
also update the reference revision. Similar to the commit bian, | expect it to be a

commonly used feature.

IR IDE
File Edit Quick Compile Simulate Merge All Commit
~ Test Project Procedure: void ZRUser(float my State[12], float other

* Procedures
Wew Procedure E ff F *)' (y O

= ZRUser

* Global Variables
Mew “ariable

Figure 17: Two new features: 'Commit' and 'Merge All' are plaakin the menu bar.

As discussed before, the interface for merging multiple elents must be learnable,
visible, and e cient. Similar to the "Merge Content" interfa ce, | plan to achieve
learnability and visibility by keeping the interface as simfe as possible while still
achieving its goals. For e ciency, | have set default actioa for each of the individual
merging actions to choose the most likely response. Howevére user is free to

override the defaults if they choose to.

50

Merge All

Changes Action

Do you want to add procedure
spin?

@ Yes O No

m Cancel All

Figure 18: The Merge All interface clearly presents each chandrom the latest
revision. Defaults are set, but the user can ultimately chee to accept or discard
any and all changes.

With an initial implementation of the new backend and frontenl systems, | turn

my focus towards testing.

51

6 Testing

In order to test the new collaborative editor, | created a ste of eight tests for users to
nd out how intuitive the new features were. | then had three udergraduate students
who were familiar with the Zero Robotics IDE take the tests athreport their ndings

through a survey. To also collect objective data, | implemeed a clicktracking system

to be run in the background.

6.1 Clicktracking System

Whenever a user clicked on one of the new features, a post wast4e an o site
PHP server describing the type of click it was. The server wadilparse it and insert
an appropriate record into a MySQL database. Once all the testwere complete, |

would then be able to analyze quantitative results of the new Baborative editor.

For commits, | compared the number of successful commits vessunsuccessful
commits. An unsuccessful commit can be attributed to an unsad project or having
a reference revision out of date. If the tools provided for oamitting were truly
intuitive, 1 would expect only a few unsuccessful commits ogpared to successful
ones in the long run. For all of the merging popup interfaced, compared their
success rate as well. In all cases, the user is given an acagyion, a decline option,
and a cancel option. A fourth "X" button was also available on e topright of each
popup that would essentially act as a cancel. | treated the aept and decline options
as successful responses and the cancel or "x" as unsuccéssiponses. Figure 19

shows the database structure created to determine these eat

52

Commits
User Time Successful?

Merge Variable
User Time Light Clicked? Color _of element Mew Variable?

Merge Variable Prompt
User Time Cancelled?

Merge Procedure
User Time Light_Clicked? Color_of_element Mew Procedure?

Merge Procedure Prompt
User Time Cancelled?

MMerge All
User Time

Merge All Prompt
User Time Successful? Cancelled? ®_clicked?

Merge Content
User Time

Merge Content Prompt
User Time Successful? Cancelled? ®_clicked?

Figure 19: The user eld is used to aggregate data on a per useadis. Combined
with the timestamp, it estimates the duration the user spensl on each popup. The
other elds are used to determine what the user clicked on inrder to determine the
success rates of each feature.

53

6.2 User Testing

In this section | will describe each of the eight tests creadeand their objectives. |
will then analyze the results and feedback from three userBor each test, users were
given a project that was in a speci ¢ state and a set of instraions to follow. After
nishing the test, users were to rate the test as one of the foling:

1. Confusing/had problems and had to skip it

2. Confusing/had problems but was able to nish it

3. Very straightforward/ no problems

In project 1, users are given an empty project. They are askeédo add two simple

elements and then commit the project.

In this simple test, all three users described the test as "wme straightforward",

showing that there is nothing unexpected with the commit tolo

54

